An automatic Computer-Aided Diagnosis system based on the Multimodal fusion of Breast Cancer (MF-CAD)

模态(人机交互) 计算机科学 计算机辅助设计 人工智能 计算机辅助诊断 乳腺癌 乳腺摄影术 支持向量机 模式识别(心理学) 局部二进制模式 模式 人工神经网络 特征(语言学) 磁共振成像 特征提取 癌症 医学 放射科 图像(数学) 工程类 工程制图 社会学 哲学 内科学 直方图 语言学 社会科学
作者
Raouia Mokni,Norhène Gargouri,Alima Damak,Dorra Sellami,W. Feki,Z. Mnif
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102914-102914 被引量:14
标识
DOI:10.1016/j.bspc.2021.102914
摘要

The risk of death incurred by breast cancer is rising exponentially, especially among women. The early breast cancer diagnosis before it metastasizes helps medical staff controlling this disease, which decreases the risk of death. This made early breast cancer detection a crucial problem. Different imaging modalities offer complementary information concerning the same lesion helps to increase the performance of thcy fusing several modalities. This paper proposes a computerized features classification of breast cancer lesions through both the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) and Digital Mammographic images (MGs). This study aims to investigate a Multimodal Fusion-based Computer-Aided Diagnosis (CAD) system, called MF-CAD, based on multivariate analysis of different modalities, for breast cancer mass detection. In this paper, firstly a new local feature descriptor is proposed in feature extraction, namely, the Gradient Local Information Pattern (GLIP), where we consider the gradient magnitude and orientation as well as the local differences as local binary features for DCE-MRI (or MGs) modality. Secondly, the fusion scheme is conducted using the Canonical Correlation Analysis (CCA) to highlight the intrinsic relation between these modalities. Finally, for comparative purposes, several selected machine learning classifiers (K-Nearest Neighbors, Support Vector Machine, Random forests, Artificial Neural Networks and Radial Basis Function Neural Network (RBFNN)) are used to distinguish between mass and No-mass breast images.Evaluation experiments of the diagnostic performances of our MF-CAD system are conducted over private datasets that contain both MG and DCE-MRI images acquired from 286 patients, which are “Breast DCE-MRI”, “Breast-MG” and “Breast Multimodal” datasets. Experimental results of the proposed MF-CAD system achieved an Area Under the ROC Curve (AUC) value of 99.10% using RBFNN classifier, while for each single modality alone, the best AUC values of 97.20% and 93.50% are obtained respectively for MG and DCE-MRI modalities using random forest classifier. A comparative study with recent existing approaches shows the competitive performances of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHH完成签到,获得积分10
1秒前
2秒前
3秒前
keimer完成签到,获得积分10
6秒前
chen完成签到,获得积分10
7秒前
tjpu发布了新的文献求助10
8秒前
慕青应助文章仙人采纳,获得10
8秒前
是否发布了新的文献求助10
8秒前
10秒前
梌夕完成签到 ,获得积分10
13秒前
15秒前
15秒前
wlei发布了新的文献求助10
15秒前
yat完成签到 ,获得积分10
16秒前
Hello应助蔓越莓麻薯采纳,获得10
16秒前
17秒前
WFLLL发布了新的文献求助10
19秒前
英姑应助淡然的翠风采纳,获得10
20秒前
MchemG应助淳于笑翠采纳,获得20
21秒前
21秒前
文章仙人发布了新的文献求助10
22秒前
林夕完成签到 ,获得积分10
24秒前
Hello应助超级BoBo采纳,获得10
26秒前
科研通AI5应助张.采纳,获得20
26秒前
文章仙人完成签到,获得积分10
28秒前
小爱同学完成签到 ,获得积分10
29秒前
在水一方应助糊涂的大象采纳,获得10
29秒前
xiaoputaor完成签到 ,获得积分10
31秒前
31秒前
子车茗应助张朝程采纳,获得20
34秒前
Akim应助英俊铸海采纳,获得10
35秒前
woshibyu完成签到 ,获得积分10
35秒前
36秒前
39秒前
轻松小张应助列克星敦采纳,获得30
39秒前
HAHA完成签到,获得积分10
40秒前
dennisysz发布了新的文献求助10
41秒前
Lain完成签到,获得积分10
42秒前
大气的念桃完成签到 ,获得积分10
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103