An automatic Computer-Aided Diagnosis system based on the Multimodal fusion of Breast Cancer (MF-CAD)

模态(人机交互) 计算机科学 计算机辅助设计 人工智能 计算机辅助诊断 乳腺癌 乳腺摄影术 支持向量机 模式识别(心理学) 局部二进制模式 模式 人工神经网络 特征(语言学) 磁共振成像 特征提取 癌症 医学 放射科 图像(数学) 工程类 工程制图 社会学 哲学 内科学 直方图 语言学 社会科学
作者
Raouia Mokni,Norhène Gargouri,Alima Damak,Dorra Sellami,W. Feki,Z. Mnif
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102914-102914 被引量:14
标识
DOI:10.1016/j.bspc.2021.102914
摘要

The risk of death incurred by breast cancer is rising exponentially, especially among women. The early breast cancer diagnosis before it metastasizes helps medical staff controlling this disease, which decreases the risk of death. This made early breast cancer detection a crucial problem. Different imaging modalities offer complementary information concerning the same lesion helps to increase the performance of thcy fusing several modalities. This paper proposes a computerized features classification of breast cancer lesions through both the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) and Digital Mammographic images (MGs). This study aims to investigate a Multimodal Fusion-based Computer-Aided Diagnosis (CAD) system, called MF-CAD, based on multivariate analysis of different modalities, for breast cancer mass detection. In this paper, firstly a new local feature descriptor is proposed in feature extraction, namely, the Gradient Local Information Pattern (GLIP), where we consider the gradient magnitude and orientation as well as the local differences as local binary features for DCE-MRI (or MGs) modality. Secondly, the fusion scheme is conducted using the Canonical Correlation Analysis (CCA) to highlight the intrinsic relation between these modalities. Finally, for comparative purposes, several selected machine learning classifiers (K-Nearest Neighbors, Support Vector Machine, Random forests, Artificial Neural Networks and Radial Basis Function Neural Network (RBFNN)) are used to distinguish between mass and No-mass breast images.Evaluation experiments of the diagnostic performances of our MF-CAD system are conducted over private datasets that contain both MG and DCE-MRI images acquired from 286 patients, which are “Breast DCE-MRI”, “Breast-MG” and “Breast Multimodal” datasets. Experimental results of the proposed MF-CAD system achieved an Area Under the ROC Curve (AUC) value of 99.10% using RBFNN classifier, while for each single modality alone, the best AUC values of 97.20% and 93.50% are obtained respectively for MG and DCE-MRI modalities using random forest classifier. A comparative study with recent existing approaches shows the competitive performances of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐一完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
核桃发布了新的文献求助10
3秒前
5秒前
5秒前
wzq关闭了wzq文献求助
6秒前
王迪完成签到,获得积分10
7秒前
clearsky应助兴奋的菠萝采纳,获得20
8秒前
周繁发布了新的文献求助10
9秒前
ZZQ发布了新的文献求助10
9秒前
9秒前
eehbebha完成签到,获得积分20
9秒前
kk应助sasa采纳,获得10
10秒前
bingrui完成签到,获得积分10
10秒前
科研通AI6应助阳光的未来采纳,获得10
10秒前
xinyuxie应助山長采纳,获得10
11秒前
12秒前
12秒前
科研通AI5应助RL采纳,获得10
12秒前
zzz发布了新的文献求助10
12秒前
yoneyamai完成签到,获得积分10
13秒前
壹米完成签到,获得积分20
13秒前
13秒前
yamoon完成签到,获得积分10
14秒前
忙里偷闲完成签到,获得积分10
15秒前
麕麕完成签到 ,获得积分10
16秒前
Ava应助白纸采纳,获得10
17秒前
yangou完成签到,获得积分10
18秒前
18秒前
1111111111111发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
汉堡包应助三个句号采纳,获得10
19秒前
兴奋的菠萝完成签到,获得积分20
20秒前
王则前完成签到,获得积分20
20秒前
醉翁应助月落乌啼霜满天采纳,获得10
21秒前
YSM完成签到,获得积分0
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676618
求助须知:如何正确求助?哪些是违规求助? 4054330
关于积分的说明 12537287
捐赠科研通 3748475
什么是DOI,文献DOI怎么找? 2070437
邀请新用户注册赠送积分活动 1099433
科研通“疑难数据库(出版商)”最低求助积分说明 979134