Large-scale flash flood warning in China using deep learning

暴发洪水 计算机科学 预警系统 水准点(测量) 降水 闪光灯(摄影) 大洪水 危害 比例(比率) 索引(排版) 环境科学 人工智能 气象学 地图学 电信 地理 视觉艺术 考古 有机化学 化学 艺术 万维网
作者
Gang Zhao,Ronghua Liu,Mingxiang Yang,Tongbi Tu,Meihong Ma,Yang Hong,Xiekang Wang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:604: 127222-127222 被引量:14
标识
DOI:10.1016/j.jhydrol.2021.127222
摘要

Flash flood warning (FFW) systems play a fundamental role in flood hazard prevention and mitigation. In this study, we propose the first deep learning-based approach for large-scale FFW and demonstrate the application of this approach to mountainous and hilly areas of China. Specifically, the time series of precipitation before flash floods and three spatial features (maximum daily precipitation, curve number, and slope) are selected as predictors. A long short-term memory (LSTM)-based approach is adopted to predict the occurrence of flash floods, and we compare this approach with two widely used FFW methods, namely the rainfall triggering index (RTI) and flash flood guidance (FFG). The results demonstrate the following: (1) The LSTM-based approach provided a reliable FFW 1 day ahead with a hit rate (HR) of 0.84 and false alarm rate (FAR) of 0.09. It demonstrated moderate warning performance 2 days before flash floods, with an HR of 0.66 and FAR of 0.21. (2) The LSTM-based approach outperformed the benchmark RTI and FFG methods, achieving the highest critical success index (CSI) of 0.77. The FFG also provided satisfactory performance, with a CSI of 0.71, and the RTI demonstrated the lowest performance (CSI = 0.68). (3) The LSTM-based approach provides better results (CSI = 0.75) than RTI (CSI = 0.68) when only the time series of precipitation is used for prediction. The performance of the LSTM-based approach can be improved by considering the spatial features and a long time series of precipitation during model development. (4) The proposed approach did not exacerbate the effect of precipitation uncertainty on the flash flood warning; and we suggest using ensemble results for FFW to reduce the uncertainty caused by small or unbalanced learning samples. We conclude that the proposed approach is a valid method for large-scale FFW without using commercially sensitive observations, and can improve the capabilities of flood disaster mitigation, particularly in ungauged areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pool完成签到 ,获得积分10
刚刚
晚星完成签到,获得积分10
刚刚
2秒前
刘七岁完成签到,获得积分10
2秒前
用师兄单身换论文必中完成签到,获得积分10
3秒前
从容谷菱发布了新的文献求助10
4秒前
吴晨曦完成签到,获得积分10
4秒前
飞雪完成签到,获得积分10
4秒前
熊熊发布了新的文献求助10
7秒前
贺贺完成签到,获得积分10
7秒前
Miranda发布了新的文献求助10
8秒前
科研通AI5应助文献狂人采纳,获得10
8秒前
CipherSage应助1111222333采纳,获得10
11秒前
风中书易完成签到,获得积分10
11秒前
11秒前
尖叫尖叫完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
小饭团子发布了新的文献求助20
14秒前
张六六完成签到 ,获得积分10
15秒前
叶痕TNT完成签到 ,获得积分10
15秒前
16秒前
典雅的夜安完成签到,获得积分10
17秒前
华仔应助Gray采纳,获得10
17秒前
18秒前
sybs完成签到,获得积分10
18秒前
黄晃晃完成签到,获得积分20
18秒前
li发布了新的文献求助30
19秒前
ju发布了新的文献求助10
19秒前
Orange应助大方的百川采纳,获得10
20秒前
20秒前
桐桐应助深情的思雁采纳,获得10
20秒前
可口可乐发布了新的文献求助10
20秒前
能干的鞅发布了新的文献求助10
20秒前
Miranda完成签到,获得积分10
20秒前
20秒前
Fairy4964完成签到,获得积分10
20秒前
gao完成签到 ,获得积分10
21秒前
沿岸有贝壳完成签到,获得积分10
21秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728