Cloud Removal in Remote Sensing Images Using Generative Adversarial Networks and SAR-to-Optical Image Translation

计算机科学 人工智能 合成孔径雷达 翻译(生物学) 深度学习 残余物 图像翻译 卫星 计算机视觉 遥感 云计算 相似性(几何) 图像(数学) 算法 地质学 基因 信使核糖核酸 操作系统 工程类 航空航天工程 生物化学 化学
作者
Faramarz Naderi Darbaghshahi,Mohammad Reza Mohammadi,Mohsen Soryani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-9 被引量:39
标识
DOI:10.1109/tgrs.2021.3131035
摘要

Satellite images are often contaminated by clouds. Cloud removal has received special attention due to the wide range of satellite image applications. As the clouds thicken, the process of removing them becomes more challenging. In such cases, using auxiliary images, such as near-infrared or synthetic aperture radar (SAR), for reconstructing is common. In this study, we attempt to solve the problem using two generative adversarial networks (GANs): the first translates SAR images to optical images and the second removes clouds using the translated images of prior GAN. Also, we propose dilated residual inception blocks (DRIBs) instead of vanilla U-net in the generator networks and use structural similarity index measure (SSIM) in addition to the L1 loss function. Reducing the number of downsamplings and expanding receptive fields by dilated convolutions increased the quality of output images. We used the SEN1-2 dataset to train and test both GANs, and we made cloudy images by adding synthetic clouds to optical images. In addition, we used the SEN12MS-CR dataset to test network performance to remove real clouds. The restored images are evaluated using PSNR, SSIM, SAM, MAE, RMSE, and $Q$ . We compared the proposed method with state-of-the-art deep learning models and achieved more accurate results in both SAR-to-optical image translation and cloud removal parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凯凯完成签到,获得积分10
1秒前
1秒前
Serendipity发布了新的文献求助10
1秒前
1秒前
晴心发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
冰魂应助负责的方盒采纳,获得10
3秒前
科研通AI5应助wzppp采纳,获得10
3秒前
4秒前
尹雪儿发布了新的文献求助10
4秒前
4秒前
豆包发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
零一发布了新的文献求助10
6秒前
万历发布了新的文献求助10
6秒前
6秒前
6秒前
蛙趣发布了新的文献求助10
7秒前
LAFF完成签到,获得积分10
7秒前
科目三应助Jie采纳,获得10
7秒前
江月年发布了新的文献求助10
8秒前
顾矜应助轻松的茉莉采纳,获得10
8秒前
foryou000完成签到,获得积分20
8秒前
π1发布了新的文献求助10
9秒前
图南完成签到,获得积分10
10秒前
莫莫发布了新的文献求助30
10秒前
10秒前
Owen应助我去打球采纳,获得10
10秒前
finger完成签到,获得积分10
10秒前
LAFF发布了新的文献求助10
10秒前
XUN发布了新的文献求助10
10秒前
10秒前
sxd发布了新的文献求助30
12秒前
JamesPei应助豆包采纳,获得10
12秒前
KM完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432