Comprehensive multi-omics approaches reveal the hepatotoxic mechanism of perfluorohexanoic acid (PFHxA) in mice

全氟辛烷 氧化应激 化学 代谢组学 机制(生物学) 肝损伤 谷胱甘肽 代谢途径 生物化学 新陈代谢 转录组 药理学 生物 磺酸盐 基因 有机化学 基因表达 哲学 认识论 色谱法
作者
Li-Long Jiang,Yanjun Hong,Guangshan Xie,Jianhua Zhang,Hongna Zhang,Zongwei Cai
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:790: 148160-148160 被引量:30
标识
DOI:10.1016/j.scitotenv.2021.148160
摘要

Perfluorohexanoic acid (PFHxA), one of the short-chain perfluoroalkyl acids (PFAAs), is considered as a substitute of perfluorooctane sulfonate (PFOS). This emerging organic pollutant is persistent and highly bioavailable to humans, raising concerns about its potential health risks. There are currently few researches on the toxicity of PFHxA. Liver has been suggested to be the main target of PFHxA toxicity, and the mechanism remains unclear. Herein, we investigated the transcriptomic, proteomic, and metabolomic landscape in PFHxA-exposed mice. Using these approaches, we identified several valuable biological processes involved in the process of liver injury, comprising fatty acid biosynthesis and degradation pathways, which might be induced by peroxisome proliferator-activated receptor (PPAR) signaling pathway. These processes further promoted oxidative stress and induced liver injury. Meanwhile, abnormalities in purine metabolism and glutathione metabolism were observed during the liver injury induced by PFHxA, indicating the production of oxidative stress. Finally, our present multi-omics studies provided new insights into the mechanisms involved in PFHxA-induced liver injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
syl完成签到,获得积分10
3秒前
4秒前
铲铲完成签到,获得积分10
4秒前
肉酱完成签到 ,获得积分10
5秒前
5秒前
皛宁完成签到 ,获得积分10
5秒前
在水一方应助江峰采纳,获得10
6秒前
ivying0209完成签到,获得积分10
7秒前
7秒前
法尔服务发布了新的文献求助10
8秒前
不吃胡萝卜完成签到 ,获得积分10
8秒前
XXX完成签到,获得积分10
12秒前
cookie发布了新的文献求助10
12秒前
晚星完成签到,获得积分10
13秒前
15秒前
老张完成签到,获得积分20
15秒前
冰魂应助cookie采纳,获得10
21秒前
深情安青应助gyj采纳,获得10
21秒前
21秒前
22秒前
Meng完成签到,获得积分10
22秒前
albertchan完成签到,获得积分10
22秒前
wangyyyy1发布了新的文献求助10
23秒前
Cy驳回了852应助
23秒前
乐乐应助微笑的冰枫采纳,获得10
26秒前
26秒前
hanzhipad应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
冰魂应助科研通管家采纳,获得20
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
31秒前
冰魂应助科研通管家采纳,获得10
31秒前
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
32秒前
江峰发布了新的文献求助10
33秒前
34秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472