旋节分解
缩放比例
物理
领域(数学分析)
分解
长度刻度
同种类的
亚稳态
数学物理
统计物理学
数学
相(物质)
数学分析
量子力学
几何学
化学
有机化学
作者
Klaus Mecke,Victor Sofonea
出处
期刊:Physical review
日期:1997-10-01
卷期号:56 (4): R3761-R3764
被引量:70
标识
DOI:10.1103/physreve.56.r3761
摘要
The morphology of homogeneous phases during spinodal decomposition, i.e., the scaling of the content, shape, and connectivity of spatial structures is described by a family of morphological measures, known as Minkowski functionals. Besides providing means to determine the characteristic length scale $L$ in a statistically robust and computationally inexpensive way, the measures allow also one to define the crossover from the early stage decomposition to the late stage domain growth. We observe the scaling behavior $L\ensuremath{\sim}{t}^{\ensuremath{\alpha}}$ with $\ensuremath{\alpha}=1/3,$ $\ensuremath{\alpha}=1/2,$ and $\ensuremath{\alpha}=2/3$ depending on the viscosity. When approaching the spinodal ${\ensuremath{\rho}}_{\mathrm{sp}},$ we recover the prediction $L\ensuremath{\sim}(\ensuremath{\rho}\ensuremath{-}{\ensuremath{\rho}}_{\mathrm{sp}}{)}^{\ensuremath{-}1/2}$ for the early time decomposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI