Mapping actual thermal properties to building elements in gbXML-based BIM for reliable building energy performance modeling

建筑信息建模 计算机科学 建筑围护结构 建筑设计 建筑模型 高效能源利用 楼宇自动化 建筑能耗模拟 能量(信号处理)
作者
Youngjib Ham,Mani Golparvar-Fard
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:49: 214-224 被引量:100
标识
DOI:10.1016/j.autcon.2014.07.009
摘要

Abstract The ability to import building geometric and construction thermal data from building information models (BIM) has significant potential to reduce the time and uncertainty in building energy modeling process. In today's BIM-based energy modeling practice, thermal properties are mainly derived from generic building construction types in BIM. However, for energy modeling of existing buildings, such assumptions are often inaccurate as they do not account for diminishing thermal resistances of building materials instigated by their deteriorations. To improve the reliability of BIM-based energy modeling, we present a system, together with new methods for automated association and updating of actual thermal property measurements with BIM elements in gbXML schema. By leveraging collections of digital and thermal images and based on environmental measurements, our system first produces a 3D thermal model for the building under inspection and then derives the actual thermal resistances of the building assemblies at the level of 3D vertexes. By associating these measurements with their corresponding elements in gbXML, thermal properties of the BIM elements are automatically updated. Our experiments in real-world residential and instructional buildings show how actual thermal properties can be automatically associated with BIM elements and updated in gbXML. The proposed method shortens the gap between architectural information in BIM and the actual data needed for energy performance simulation, and enables reliable BIM-based energy analysis for retro-commissioning, continuous commissioning, and retrofit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fwstu发布了新的文献求助30
3秒前
xiaohuang发布了新的文献求助10
4秒前
7秒前
ycw7777完成签到,获得积分10
8秒前
wang完成签到,获得积分10
8秒前
CWC完成签到,获得积分10
11秒前
student完成签到 ,获得积分10
12秒前
打打应助xiaohuang采纳,获得10
14秒前
轩辕德地完成签到,获得积分10
16秒前
16秒前
18秒前
daijk完成签到,获得积分10
18秒前
清秀龙猫完成签到 ,获得积分10
19秒前
dxurp发布了新的文献求助10
21秒前
欢喜板凳完成签到 ,获得积分10
23秒前
蓝黑木头发布了新的文献求助10
23秒前
幽默的南珍完成签到 ,获得积分10
26秒前
dxurp完成签到,获得积分10
27秒前
28秒前
丹丹完成签到,获得积分10
30秒前
阿然完成签到,获得积分10
33秒前
35秒前
芒果布丁完成签到 ,获得积分10
37秒前
fwstu完成签到,获得积分10
38秒前
39秒前
超级灰狼完成签到 ,获得积分10
41秒前
机灵山河完成签到 ,获得积分20
43秒前
爱爱完成签到 ,获得积分10
44秒前
哭泣青烟完成签到 ,获得积分10
48秒前
i2stay完成签到,获得积分10
54秒前
香锅不要辣完成签到 ,获得积分10
57秒前
阿桂完成签到 ,获得积分10
1分钟前
Zachary完成签到 ,获得积分10
1分钟前
1分钟前
天才小能喵完成签到 ,获得积分0
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
CYT完成签到,获得积分10
1分钟前
柚C美式完成签到 ,获得积分10
1分钟前
大气傲易完成签到 ,获得积分10
1分钟前
然而。完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833939
求助须知:如何正确求助?哪些是违规求助? 3376362
关于积分的说明 10492715
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859