锌
三氟甲磺酸
电化学
碳酸乙烯酯
碳酸丙烯酯
电解质
离子电导率
无机化学
电导率
阳极
化学
电化学窗口
聚合物
材料科学
电极
有机化学
物理化学
催化作用
标识
DOI:10.1016/s0167-2738(03)00209-1
摘要
Gel polymer electrolyte (GPE) films comprising of poly(vinylidenefluoride), propylene carbonate, ethylene carbonate and zinc trifluoromethane sulfonate are prepared and characterized. The composition of GPE is optimized to contain minimum liquid components with a maximum specific conductivity of 3.94×10−3 S cm−1 at (25±1) °C. A detailed investigation on the properties such as ionic conductivity, transport number, electrochemical stability window, reversibility of Zn/Zn2+ couple and Zn/gel electrolyte interfacial stability have been carried out. The ionic conductivity follows a VTF behaviour with an activation energy of about 0.0014 eV. Cationic transport number varies from 0.51 at 25 °C to 0.18 at 70 °C. Several cells have been assembled with GPE as the electrolyte, zinc as the anode, γ-MnO2 as the cathode and their charge–discharge behaviour followed. Capacity values of 105, 82, 64 and 37 mAh/g of MnO2 have been achieved at 10, 50, 100 and 200 μA/cm2 discharge current densities, respectively. The discharge capacity values are almost constant for about 55 cycles for all values of current densities. Cyclic voltammetric study of MnO2 electrode in Zn/GPE/MnO2 cell clearly shows intercalation/deintercalation of Zn2+.
科研通智能强力驱动
Strongly Powered by AbleSci AI