Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 过程(计算) 决策树 人工智能 变量(数学) 数据科学 订单(交换) 数据挖掘 数学 经济 数学分析 财务 操作系统 数据库
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:593
标识
DOI:10.48550/arxiv.1407.7502
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助懒羊羊大王采纳,获得10
1秒前
流沙完成签到,获得积分10
2秒前
风趣的安阳完成签到 ,获得积分10
2秒前
LaTeXer应助dophin采纳,获得10
4秒前
小屁孩完成签到,获得积分10
5秒前
Max关注了科研通微信公众号
7秒前
失眠的向日葵完成签到 ,获得积分10
7秒前
Lzced完成签到 ,获得积分10
7秒前
称心的语梦完成签到,获得积分10
7秒前
一条闲鱼完成签到,获得积分10
8秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
Stella应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
ccmxigua应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
LewisAcid应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
9秒前
9秒前
邱寒烟aa完成签到 ,获得积分0
10秒前
香蕉觅云应助淡淡丹妗采纳,获得10
11秒前
junc完成签到,获得积分10
11秒前
dophin完成签到,获得积分10
13秒前
赘婿应助dhh198采纳,获得10
13秒前
一条闲鱼发布了新的文献求助10
14秒前
兰岚完成签到,获得积分10
14秒前
浅池星完成签到 ,获得积分10
15秒前
F2022完成签到,获得积分20
16秒前
杨鑫萍完成签到 ,获得积分10
19秒前
111完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109