Structure and Overlaps of Ground-Truth Communities in Networks

不可用 计算机科学 基本事实 群落结构 共同点 对比度(视觉) 数据科学 理论计算机科学 数据挖掘 人工智能 社会学 数学 统计 沟通 组合数学
作者
Jaewon Yang,Jure Leskovec
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:5 (2): 1-35 被引量:111
标识
DOI:10.1145/2594454
摘要

One of the main organizing principles in real-world networks is that of network communities , where sets of nodes organize into densely linked clusters. Even though detection of such communities is of great interest, understanding the structure communities in large networks remains relatively limited. In particular, due to the unavailability of labeled ground-truth data, it was traditionally very hard to develop accurate models of network community structure. Here we use six large social, collaboration, and information networks where nodes explicitly state their ground-truth community memberships. For example, nodes in social networks join into explicitly defined interest based groups, and we use such groups as explicitly labeled ground-truth communities. We use such ground-truth communities to study their structural signatures by analyzing how ground-truth communities emerge in networks and how they overlap. We observe some surprising phenomena. First, ground-truth communities contain high-degree hub nodes that reside in community overlaps and link to most of the members of the community. Second, the overlaps of communities are more densely connected than the non-overlapping parts of communities. We show that this in contrast to the conventional wisdom that community overlaps are more sparsely connected than the non-overlapping parts themselves. We then show that many existing models of network communities do not capture dense community overlaps. This in turn means that most present models and community detection methods confuse overlaps as separate communities. In contrast, we present the community-affiliation graph model (AGM), a conceptual model of network community structure. We demonstrate that AGM reliably captures the overall structure of networks as well as the overlapping and hierarchical nature of network communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宏宇发布了新的文献求助10
1秒前
1秒前
布丁完成签到 ,获得积分0
2秒前
2秒前
秋子发布了新的文献求助10
3秒前
李健的小迷弟应助Min采纳,获得10
6秒前
LYJ发布了新的文献求助100
7秒前
kaki完成签到,获得积分20
12秒前
情怀应助ZW采纳,获得10
14秒前
破灭圆舞曲完成签到,获得积分10
14秒前
15秒前
今后应助老实寒云采纳,获得10
17秒前
坚定的骁发布了新的文献求助10
18秒前
所所应助张宏宇采纳,获得10
18秒前
19秒前
Hello应助达不溜qp采纳,获得10
21秒前
田様应助秋子采纳,获得10
21秒前
坚定的骁完成签到,获得积分10
22秒前
五岳三鸟完成签到,获得积分10
23秒前
rrrr发布了新的文献求助20
24秒前
26秒前
隐形曼青应助aaaq采纳,获得30
28秒前
wanci应助起起采纳,获得10
28秒前
29秒前
30秒前
orixero应助朴实以云采纳,获得10
33秒前
魔法师完成签到,获得积分0
34秒前
34秒前
橘子香发布了新的文献求助10
34秒前
丢丢银发布了新的文献求助50
35秒前
36秒前
CHY发布了新的文献求助30
39秒前
40秒前
moji发布了新的文献求助10
41秒前
rrrr完成签到,获得积分20
43秒前
44秒前
WILD完成签到 ,获得积分10
44秒前
45秒前
九耳久知完成签到,获得积分10
49秒前
打打应助橘子香采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776855
求助须知:如何正确求助?哪些是违规求助? 3322276
关于积分的说明 10209617
捐赠科研通 3037624
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976