Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

蛋白质-蛋白质相互作用 蛋白质结构 计算生物学 计算机科学 蛋白质结构预测 生物 遗传学 生物化学
作者
Nurcan Tunçbağ,Attila Gürsoy,Özlem Keskin
出处
期刊:Physical Biology [IOP Publishing]
卷期号:8 (3): 035006-035006 被引量:60
标识
DOI:10.1088/1478-3975/8/3/035006
摘要

The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小姜醒醒发布了新的文献求助10
刚刚
Crema完成签到,获得积分10
刚刚
lhhhh发布了新的文献求助10
1秒前
雪掩的往事完成签到,获得积分10
1秒前
2秒前
2秒前
假装有昵称完成签到,获得积分10
3秒前
fosca完成签到,获得积分10
3秒前
时尚的沧海完成签到,获得积分10
3秒前
Lucas应助无名采纳,获得10
3秒前
3秒前
酷波er应助淡然的怀柔采纳,获得10
3秒前
伴夏完成签到,获得积分10
4秒前
义气碧菡发布了新的文献求助10
4秒前
涂图完成签到,获得积分20
5秒前
njhuxs发布了新的文献求助10
5秒前
随机完成签到,获得积分10
5秒前
5秒前
啊啊发布了新的文献求助10
6秒前
StevenZhao完成签到,获得积分0
7秒前
鱿鱼发布了新的文献求助10
7秒前
holo完成签到,获得积分10
7秒前
科研通AI5应助勤劳志泽采纳,获得50
7秒前
传奇3应助锣大炮采纳,获得10
7秒前
8秒前
林夏发布了新的文献求助10
8秒前
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744