Prediction of intramuscular fat percentage in live swine using real-time ultrasound1

腰肉 肌内脂肪 动物科学 线性回归 数学 超声波 胸最长肌 生物 统计 温柔 医学 放射科
作者
D. W. Newcom,T. J. Baas,J. F. Lampe
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:80 (12): 3046-3052 被引量:79
标识
DOI:10.2527/2002.80123046x
摘要

Purebred Durocs (n = 207) were used to develop a model to predict loin intramuscular fat percentage (PIMF) of the longissimus muscle in live pigs. A minimum of four longitudinal, real-time ultrasound images were collected 7 cm off-midline across the 10th to the 13th ribs on the live animal. A trained technician used texture analysis software to interpret the images and produce 10 image parameters. Backfat and loin muscle area were measured from a cross-sectional image at the 10th rib. After harvest, a slice from the 10th to the 11th rib loin interface was used to determine carcass loin intramuscular fat percentage (CIMF). The model to predict loin intramuscular fat percentage was developed using linear regression analysis with CIMF as the dependent variable. Initial independent variables were off-test weight, live animal ultrasonic 10th rib backfat and loin muscle area, and the 10 image parameters. Independent variables were removed individually until all variables remaining were significant (P < 0.05). The final prediction model included live animal ultrasound backfat and five image parameters. The multiple coefficient of determination and root mean square error for the prediction model were 0.32 and 1.02%, respectively. An independent data set of Duroc (n = 331) and Yorkshire (n = 288) pigs from two replications of the National Pork Board's Genetics of Lean Efficiency Project were used for model validation. Results showed the Duroc pigs provided the best validation of the model. The product moment correlation and rank correlation coefficients between PIMF and CIMF were 0.60 and 0.56, respectively, in the Duroc population. Results show real-time ultrasound image analysis can be used to predict intramuscular fat percentage in live swine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗暴的坤发布了新的文献求助10
1秒前
cccc发布了新的文献求助20
1秒前
传奇3应助zjl采纳,获得10
1秒前
1秒前
zhaoxi发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
Xuan发布了新的文献求助10
3秒前
MOMO发布了新的文献求助10
3秒前
3秒前
dyh179完成签到 ,获得积分20
3秒前
冷静葵阴完成签到,获得积分10
3秒前
bkagyin应助0_o采纳,获得10
4秒前
在水一方应助如意果汁采纳,获得10
4秒前
sin给sin的求助进行了留言
4秒前
4秒前
Methylation发布了新的文献求助30
5秒前
Owen应助ee采纳,获得10
5秒前
5秒前
科研通AI6应助榆木桢楠采纳,获得10
5秒前
5秒前
Jasper应助梦境采纳,获得10
6秒前
善学以致用应助落日曜采纳,获得10
6秒前
川胖完成签到,获得积分10
6秒前
6秒前
cmy完成签到,获得积分10
6秒前
cccc完成签到,获得积分10
6秒前
叶子发布了新的文献求助10
6秒前
星月完成签到,获得积分10
6秒前
6秒前
yyy完成签到,获得积分10
7秒前
Hedy发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
乐空思应助许多多采纳,获得30
10秒前
韩半仙完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742