Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images

阴道镜检查 宫颈癌 医学 计算机科学 癌症 计算机视觉 放射科 内科学
作者
Yuexiang Li,Jiawei Chen,Peng Xue,Chao Tang,Chang Jia,Chunyan Chu,Kai Ma,Qing Li,Yefeng Zheng,You‐Lin Qiao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (11): 3403-3415 被引量:102
标识
DOI:10.1109/tmi.2020.2994778
摘要

Cervical cancer causes the fourth most cancer-related deaths of women worldwide. Early detection of cervical intraepithelial neoplasia (CIN) can significantly increase the survival rate of patients. In this paper, we propose a deep learning framework for the accurate identification of LSIL+ (including CIN and cervical cancer) using time-lapsed colposcopic images. The proposed framework involves two main components, i.e., key-frame feature encoding networks and feature fusion network. The features of the original (pre-acetic-acid) image and the colposcopic images captured at around 60s, 90s, 120s and 150s during the acetic acid test are encoded by the feature encoding networks. Several fusion approaches are compared, all of which outperform the existing automated cervical cancer diagnosis systems using a single time slot. A graph convolutional network with edge features (E-GCN) is found to be the most suitable fusion approach in our study, due to its excellent explainability consistent with the clinical practice. A large-scale dataset, containing time-lapsed colposcopic images from 7,668 patients, is collected from the collaborative hospital to train and validate our deep learning framework. Colposcopists are invited to compete with our computer-aided diagnosis system. The proposed deep learning framework achieves a classification accuracy of 78.33%—comparable to that of an in-service colposcopist—which demonstrates its potential to provide assistance in the realistic clinical scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ALDXL发布了新的文献求助10
刚刚
1秒前
开心之王完成签到,获得积分10
1秒前
风中的小松鼠完成签到,获得积分20
1秒前
科研通AI5应助LHL采纳,获得10
1秒前
survivaluu发布了新的文献求助10
1秒前
shea发布了新的文献求助10
1秒前
gr发布了新的文献求助10
2秒前
2秒前
3秒前
wenwen发布了新的文献求助20
3秒前
3秒前
3秒前
112完成签到,获得积分20
5秒前
5秒前
巴巴拉拉巴拉完成签到,获得积分10
5秒前
隐形曼青应助LX采纳,获得10
6秒前
6秒前
liang19640908完成签到 ,获得积分10
6秒前
ned4speed发布了新的文献求助10
6秒前
落叶应助zero采纳,获得10
8秒前
8秒前
8秒前
doudou完成签到,获得积分10
9秒前
科研通AI5应助wxj采纳,获得10
9秒前
科研通AI5应助wxj采纳,获得10
9秒前
10秒前
10秒前
10秒前
112发布了新的文献求助30
10秒前
anaana完成签到,获得积分10
10秒前
星辰大海应助sen采纳,获得10
11秒前
可爱的函函应助wenwen采纳,获得10
11秒前
ShengzhangLiu发布了新的文献求助10
12秒前
13秒前
gr完成签到,获得积分10
14秒前
14秒前
汉堡包应助zjl采纳,获得10
14秒前
小熊66618发布了新的文献求助10
14秒前
SWD完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846