Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI

流体衰减反转恢复 随机森林 无线电技术 磁共振成像 医学 放射科 置信区间 分级(工程) Lasso(编程语言) 支持向量机 逻辑回归 特征选择 接收机工作特性 人工智能 单变量 核医学 计算机科学 机器学习 多元统计 内科学 工程类 万维网 土木工程
作者
Yuxuan Han,Tianzuo Wang,Peng Wu,Hao Zhang,Honghai Chen,Chao Yang
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:77: 36-43 被引量:50
标识
DOI:10.1016/j.mri.2020.11.009
摘要

We aimed to develop a radiomics model to predict the histopathological grading of meningiomas by magnetic resonance imaging (MRI) before surgery. We recruited 131 patients with pathological diagnosis of meningiomas. All the patients had undergone MRI before surgery on a 3.0 T MRI scanner to obtain T1 fluid- attenuated inversion recovery (T1 FLAIR) images, T2-weighted images (T2WI) and T1 FLAIR with contrast enhancement (CE-T1 FLAIR) images covering the whole brain. The removing features with low variance, univariate feature selection, and least absolute shrinkage and selection operator (LASSO) were used to select radiomics features. Six classifiers were used to train the models (logistic regression (LR), k-nearest neighbor (KNN), decision tree (DT), support vector machine (SVM), random forests (RF), and XGBoost), and then 24 models were established using a random verification method to differentiate low-grade from high-grade meningiomas. The performance was assessed by receiver-operating characteristic (ROC) analysis, the f1-score, sensitivity, and specificity. The radiomics features were significantly associated with the histopathological grading. Quantitative imaging features (n = 1409) were extracted, and nine features were selected to predict the grades of meningiomas. The best performance of the radiomics model for the degree of differentiation was obtained by SVM (area under the curve (AUC), 0.956; 95% confidence interval (CI), 0.83–1.00; sensitivity, 0.87; specificity, 0.92; f1-score, 0.90). The radiomics models are of great value in predicting the histopathological grades of meningiomas, and have broad prospects in radiology and clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
香蕉觅云应助斯文的傲珊采纳,获得100
1秒前
Yolanda发布了新的文献求助10
1秒前
橘子酱发布了新的文献求助10
1秒前
默默的XJ完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
1秒前
刘闪闪完成签到,获得积分10
2秒前
2秒前
sunrain完成签到,获得积分10
2秒前
江年完成签到 ,获得积分10
2秒前
聪明的柠檬完成签到 ,获得积分10
3秒前
无花果应助renyh2002采纳,获得10
3秒前
西瓜太郎发布了新的文献求助10
3秒前
orange完成签到,获得积分10
3秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
somnus完成签到,获得积分10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
11完成签到,获得积分10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
新火应助科研通管家采纳,获得30
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
小猴子完成签到,获得积分10
4秒前
研友_nEWly8完成签到,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
轻松凝竹发布了新的文献求助10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
大白应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517175
求助须知:如何正确求助?哪些是违规求助? 4610120
关于积分的说明 14520239
捐赠科研通 4547145
什么是DOI,文献DOI怎么找? 2491500
邀请新用户注册赠送积分活动 1473117
关于科研通互助平台的介绍 1445028