Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation

体素 分割 辍学(神经网络) 人工智能 计算机科学 深度学习 背景(考古学) 病变 模式识别(心理学) 图像分割 机器学习 医学 病理 生物 古生物学
作者
T. R. Gopalakrishnan Nair,Doina Precup,Douglas L. Arnold,Tal Arbel
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:59: 101557-101557 被引量:307
标识
DOI:10.1016/j.media.2019.101557
摘要

Deep learning networks have recently been shown to outperform other segmentation methods on various public, medical-image challenge datasets, particularly on metrics focused on large pathologies. For diseases such as Multiple Sclerosis (MS), however, monitoring all the focal lesions visible on MRI sequences, even very small ones, is essential for disease staging, prognosis, and evaluating treatment efficacy. Small lesion segmentation presents significant challenges to popular deep learning models. This, coupled with their deterministic predictions, hinders their clinical adoption. Uncertainty estimates for these predictions would permit subsequent revision by clinicians. We present the first exploration of multiple uncertainty estimates based on Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) in the context of deep networks for lesion detection and segmentation in medical images. Specifically, we develop a 3D MS lesion segmentation CNN, augmented to provide four different voxel-based uncertainty measures based on MC dropout. We train the network on a proprietary, large-scale, multi-site, multi-scanner, clinical MS dataset, and compute lesion-wise uncertainties by accumulating evidence from voxel-wise uncertainties within detected lesions. We analyze the performance of voxel-based segmentation and lesion-level detection by choosing operating points based on the uncertainty. Uncertainty filtering improves both voxel and lesion-wise TPR and FDR on remaining, certain predictions compared to sigmoid-based TPR/FDR curves. Small lesions and lesion-boundaries are the most uncertain regions, which is consistent with human-rater variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanyimeng完成签到,获得积分10
刚刚
bodhi发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
我刚上小学完成签到,获得积分10
2秒前
3秒前
3秒前
Ava应助贝利亚采纳,获得10
4秒前
4秒前
llllh完成签到,获得积分20
5秒前
陳新儒完成签到,获得积分10
6秒前
6秒前
无情听南完成签到,获得积分10
7秒前
Lucas应助布曲采纳,获得10
8秒前
Lds发布了新的文献求助10
8秒前
9秒前
跳跃萍发布了新的文献求助10
10秒前
沉静高山发布了新的文献求助10
12秒前
night完成签到,获得积分10
13秒前
冷风完成签到 ,获得积分10
13秒前
陈zz完成签到,获得积分10
13秒前
17秒前
研友_ndDY5n发布了新的文献求助10
17秒前
18秒前
李爱国应助ZHY采纳,获得10
21秒前
布曲发布了新的文献求助10
21秒前
comosum完成签到,获得积分10
21秒前
妍yan完成签到,获得积分10
23秒前
丘比特应助dou采纳,获得10
23秒前
Shownsigns发布了新的文献求助10
23秒前
luwei358完成签到,获得积分10
24秒前
YOYOYO应助贝利亚采纳,获得20
24秒前
25秒前
完美世界应助Cope采纳,获得10
29秒前
zhuhaot应助Lds采纳,获得10
30秒前
30秒前
傲娇蜻蜓完成签到,获得积分10
32秒前
伏波完成签到,获得积分10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243