Modeling Product’s Visual and Functional Characteristics for Recommender Systems

计算机科学 推荐系统 产品(数学) 领域(数学分析) 协同过滤 情报检索 服装 相关性(法律) 概率逻辑 人工智能 人机交互 数学 历史 法学 考古 数学分析 几何学 政治学
作者
Bin Wu,Xiangnan He,Yun Chen,Liqiang Nie,Kai Zheng,Yangdong Ye
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (3): 1330-1343 被引量:16
标识
DOI:10.1109/tkde.2020.2991793
摘要

An effective recommender system can significantly help customers to find desired products and assist business owners to earn more income. Nevertheless, the decision-making process of users is highly complex, not only dependent on the personality and preference of a user, but also complicated by the characteristics of a specific product. For example, for products of different domains (e.g., clothing versus office products), the product aspects that affect a user’s decision are very different. As such, traditional collaborative filtering methods that model only user-item interaction data would deliver unsatisfactory recommendation results. In this work, we focus on fine-grained modeling of product characteristics to improve recommendation quality. Specifically, we first divide a product’s characteristics into visual and functional aspects—i.e., the visual appearance and functionality of the product. One insight is that, the visual characteristic is very important for products of visually-aware domain (e.g., clothing), while the functional characteristic plays a more crucial role for visually non-aware domain (e.g., office products). We then contribute a novel probabilistic model, named Visual and Functional Probabilistic Matrix Factorization (VFPMF), to unify the two factors to estimate user preferences on products. Nevertheless, such an expressive model poses efficiency challenge in parameter learning from implicit feedback. To address the technical challenge, we devise a computationally efficient learning algorithm based on alternating least squares. Furthermore, we provide an online updating procedure of the algorithm, shedding some light on how to adapt our method to real-world recommendation scenario where data continuously streams in. Extensive experiments on four real-word datasets demonstrate the effectiveness of our method with both offline and online protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高淑桐发布了新的文献求助10
1秒前
小羊完成签到 ,获得积分10
3秒前
脑洞疼应助宏hong采纳,获得10
4秒前
蜂蜜不是糖完成签到 ,获得积分10
5秒前
落后醉易发布了新的文献求助10
6秒前
6秒前
linjiaxin完成签到,获得积分10
6秒前
小熊软糖完成签到,获得积分20
7秒前
寡妇哥完成签到 ,获得积分10
7秒前
yu完成签到,获得积分20
8秒前
Jasper应助尛瞐慶成采纳,获得10
9秒前
xionghaizi完成签到,获得积分10
11秒前
聆琳完成签到 ,获得积分10
12秒前
大模型应助认真的忆文采纳,获得10
13秒前
Kane发布了新的文献求助10
13秒前
13秒前
我有一只羊完成签到,获得积分10
14秒前
15秒前
xiaoxiao完成签到 ,获得积分10
16秒前
火星上小白菜完成签到,获得积分10
17秒前
万能图书馆应助Kane采纳,获得10
17秒前
化工渣渣完成签到,获得积分10
20秒前
baiyi完成签到 ,获得积分10
20秒前
22秒前
丘比特应助正直觅云采纳,获得10
22秒前
1111发布了新的文献求助10
26秒前
pluto应助舒心的冰烟采纳,获得10
26秒前
追光发布了新的文献求助10
27秒前
28秒前
万能图书馆应助Migrol采纳,获得10
31秒前
无花果应助zhuangxiong采纳,获得10
31秒前
penghui完成签到,获得积分10
32秒前
尛瞐慶成发布了新的文献求助10
33秒前
帅气小霜完成签到,获得积分10
36秒前
粥粥完成签到,获得积分10
38秒前
38秒前
慕青应助归安采纳,获得10
41秒前
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563