Development and validation of a machine‐learning model for prediction of shoulder dystocia

医学 肩难产 队列 妊娠期糖尿病 背景(考古学) 胎龄 接收机工作特性 产科 机器学习 怀孕 内科学 妊娠期 计算机科学 遗传学 生物 古生物学
作者
Abraham Tsur,Linoy Batsry,Shlomi Toussia‐Cohen,Melissa G. Rosenstein,Oren Barak,Yoav Brezinov,Rakefet Yoeli‐Ullman,Eyal Sivan,Marina Sirota,Maurice L. Druzin,David K. Stevenson,Yair J. Blumenfeld,Dvir Aran
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:56 (4): 588-596 被引量:51
标识
DOI:10.1002/uog.21878
摘要

ABSTRACT Objectives To develop a machine‐learning (ML) model for prediction of shoulder dystocia (ShD) and to externally validate the model's predictive accuracy and potential clinical efficacy in optimizing the use of Cesarean delivery in the context of suspected macrosomia. Methods We used electronic health records (EHR) from the Sheba Medical Center in Israel to develop the model (derivation cohort) and EHR from the University of California San Francisco Medical Center to validate the model's accuracy and clinical efficacy (validation cohort). Subsequent to application of inclusion and exclusion criteria, the derivation cohort included 686 singleton vaginal deliveries, of which 131 were complicated by ShD, and the validation cohort included 2584 deliveries, of which 31 were complicated by ShD. For each of these deliveries, we collected maternal and neonatal delivery outcomes coupled with maternal demographics, obstetric clinical data and sonographic fetal biometry. Biometric measurements and their derived estimated fetal weight were adjusted (aEFW) according to gestational age at delivery. A ML pipeline was utilized to develop the model. Results In the derivation cohort, the ML model provided significantly better prediction than did the current clinical paradigm based on fetal weight and maternal diabetes: using nested cross‐validation, the area under the receiver‐operating‐characteristics curve (AUC) of the model was 0.793 ± 0.041, outperforming aEFW combined with diabetes (AUC = 0.745 ± 0.044, P = 1e −16 ). The following risk modifiers had a positive beta that was > 0.02, i.e. they increased the risk of ShD: aEFW (beta = 0.164), pregestational diabetes (beta = 0.047), prior ShD (beta = 0.04), female fetal sex (beta = 0.04) and adjusted abdominal circumference (beta = 0.03). The following risk modifiers had a negative beta that was < −0.02, i.e. they were protective of ShD: adjusted biparietal diameter (beta = −0.08) and maternal height (beta = −0.03). In the validation cohort, the model outperformed aEFW combined with diabetes (AUC = 0.866 vs 0.784, P = 0.00007). Additionally, in the validation cohort, among the subgroup of 273 women carrying a fetus with aEFW ≥ 4000 g, the aEFW had no predictive power (AUC = 0.548), and the model performed significantly better (0.775, P = 0.0002). A risk‐score threshold of 0.5 stratified 42.9% of deliveries to the high‐risk group, which included 90.9% of ShD cases and all cases accompanied by maternal or newborn complications. A more specific threshold of 0.7 stratified only 27.5% of the deliveries to the high‐risk group, which included 63.6% of ShD cases and all those accompanied by newborn complications. Conclusion We developed a ML model for prediction of ShD and, in a different cohort, externally validated its performance. The model predicted ShD better than did estimated fetal weight either alone or combined with maternal diabetes, and was able to stratify the risk of ShD and neonatal injury in the context of suspected macrosomia. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
damaaaaaa完成签到,获得积分20
3秒前
晶晶完成签到,获得积分10
4秒前
llllliu完成签到,获得积分10
5秒前
原来完成签到,获得积分20
5秒前
5秒前
6秒前
0610发布了新的文献求助10
6秒前
魏头头完成签到 ,获得积分10
7秒前
Lucas应助勤奋的听枫采纳,获得10
7秒前
斯文败类应助缓慢弼采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
勤奋尔冬完成签到 ,获得积分10
9秒前
linjunqi完成签到,获得积分10
9秒前
9秒前
科研通AI6应助123321采纳,获得10
9秒前
10秒前
wanci应助义气的灯泡采纳,获得10
10秒前
10秒前
10秒前
优雅枫叶完成签到 ,获得积分20
10秒前
10秒前
小林完成签到 ,获得积分10
11秒前
11秒前
红豆发布了新的文献求助10
11秒前
11秒前
wish发布了新的文献求助10
12秒前
12秒前
科研通AI6应助认真的寒香采纳,获得10
12秒前
无限凝芙发布了新的文献求助10
13秒前
石子发布了新的文献求助10
13秒前
JamesPei应助zhang采纳,获得10
14秒前
小曹开摆了发布了新的文献求助150
14秒前
15秒前
15秒前
tejing1158发布了新的文献求助10
15秒前
15秒前
linghanlan完成签到,获得积分10
16秒前
Lny应助牧羊人采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959