纳米技术
接口
生物传感器
纳米颗粒
生物分子
量子点
DNA
材料科学
化学
计算机科学
生物化学
计算机硬件
作者
Qunye He,Qing Wu,Xiangran Feng,Ziyan Liao,Wenyao Peng,Yanfei Liu,Dongming Peng,Zhenbao Liu,Miao Mo
标识
DOI:10.1016/j.ijbiomac.2020.02.217
摘要
The knowledge on the mechanisms of DNA interfacing with nanoparticles holds great potential for the design, assembly and usage of DNA in biological applications. A wave of understanding and exploitation of the mechanisms in DNA-nanoparticles interfacial phenomenon has raised. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in the interaction between DNA and nanoparticles, here, we summarized the recent progresses on the fundamental principles regarding the DNA-nanoparticle interactions and their applications in biosensing. Special focus was put on inorganic nanoparticles such as metal nanoparticles, carbon-based materials, metal oxides and quantum dots. For each material, the surface properties, the interfacing mechanisms, and the kinetics and spatial control of DNA adsorption were summarized and discussed. We also highlighted some of the recent technologies based on DNA-NPs interactions for biomolecules detection. Finally, the challenges and future directions were discussed and proposed. This review provides a systematic understanding of the mechanisms in the interaction of DNA-nanoparticles, which, in turn, can inspire new insights for designing biosensors with improved properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI