A Study on Prediction of Weld Geometry in Laser Overlap Welding of Low Carbon Galvanized Steel Using ANN-Based Models

焊接 人工神经网络 田口方法 镀锌 激光束焊接 可靠性(半导体) 机械工程 激光功率缩放 结构工程 材料科学 激光器 功率(物理) 工程类 计算机科学 人工智能 复合材料 光学 物理 图层(电子) 量子力学
作者
Kamel Oussaid,Abderazak El Ouafi
出处
期刊:Journal of Software Engineering and Applications [Scientific Research Publishing, Inc.]
卷期号:12 (12): 509-523 被引量:2
标识
DOI:10.4236/jsea.2019.1212031
摘要

Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured approach developed to design an effective artificial neural network based model for predicting the weld bead dimensional characteristic in laser overlap welding of low carbon galvanized steel. The modelling approach is based on the analysis of direct and interaction effects of laser welding parameters such as laser power, welding speed, laser beam diameter and gap on weld bead dimensional characteristics such as depth of penetration, width at top surface and width at interface. The data used in this analysis was derived from structured experimental investigations according to Taguchi method and exhaustive FEM based 3D modelling and simulation efforts. Using a factorial design, different neural network based prediction models were developed, implemented and evaluated. The models were trained and tested using experimental data, supported with the data generated by the 3D simulation. Hold-out test and k-fold cross validation combined to various statistical tools were used to evaluate the influence of the laser welding parameters on the performances of the models. The results demonstrated that the proposed approach resulted successfully in a consistent model providing accurate and reliable predictions of weld bead dimensional characteristics under variable welding conditions. The best model presents prediction errors lower than 7% for the three weld quality characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉面手雷王完成签到,获得积分20
1秒前
正直红酒完成签到,获得积分10
2秒前
浮游应助Hmbb采纳,获得10
2秒前
3秒前
3秒前
5秒前
可乐发布了新的文献求助10
5秒前
小刘完成签到,获得积分10
6秒前
JMchiefEditor完成签到,获得积分10
6秒前
DrDong98完成签到,获得积分10
6秒前
浮游应助阿秃采纳,获得10
7秒前
好好搞科研完成签到 ,获得积分10
7秒前
是大胖子呀完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
9秒前
今后应助Ronna采纳,获得10
9秒前
TOM发布了新的文献求助10
10秒前
可乐完成签到,获得积分10
10秒前
憨子完成签到,获得积分20
10秒前
鲜蘑发布了新的文献求助10
10秒前
传奇3应助夏夏采纳,获得10
10秒前
任润发布了新的文献求助10
12秒前
shihui发布了新的文献求助10
14秒前
14秒前
P16完成签到,获得积分10
14秒前
一丁雨完成签到,获得积分10
14秒前
MinQi完成签到,获得积分10
14秒前
1234发布了新的文献求助10
15秒前
科研通AI6应助Zz采纳,获得10
15秒前
天天快乐应助HHHHTTTT采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
核桃应助科研通管家采纳,获得10
15秒前
leaolf应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
不安青牛应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
不安青牛应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140