Latent motives guide structure learning during adaptive social choice

不可见的 杠杆(统计) 社会心理学 困境 计算机科学 心理学 认知 社会认知 社会学习 人工智能 认知心理学 认识论 教育学 哲学 神经科学
作者
Jeroen van Baar,Matthew R. Nassar,Wenning Deng,Oriel FeldmanHall
标识
DOI:10.1101/2020.06.06.137893
摘要

Abstract Predicting the behavior of others is an essential part of human cognition that enables strategic social behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, social prediction poses a generalization problem that remains poorly understood: We can neither assume that others will simply repeat their past behavior in new settings, nor that their future actions are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In three studies, participants were tasked with predicting the decisions of another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants achieved accurate social prediction by learning the hidden motivational structure underlying the player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but cooperation in others). This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player, reflecting that accurate social structure learning can lead to more optimal social behaviors. These findings demonstrate that advantageous social behavior hinges on parsimonious and generalizable mental models that leverage others’ latent intentions. Significance statement A hallmark of human cognition is being able to predict the behavior of others. How do we achieve social prediction given that we routinely encounter others in a dizzying array of social situations? We find people achieve accurate social prediction by inferring another’s hidden motives—motives that do not necessarily have a one-to-one correspondence with observable behaviors. Participants were able to infer another’s motives using a structure learning mechanism that enabled generalization. Individuals used what they learned about others in one setting to predict their actions in an entirely new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic economic decisions to stereotyping and racial bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多吃青菜完成签到,获得积分10
刚刚
刚刚
wakaka123完成签到 ,获得积分10
刚刚
leekle完成签到,获得积分10
1秒前
Singularity应助weixiaozdw采纳,获得10
1秒前
阔达代芹完成签到,获得积分10
1秒前
酷波er应助青梨采纳,获得10
1秒前
大模型应助我cr采纳,获得10
1秒前
aa完成签到,获得积分10
1秒前
111111完成签到,获得积分10
2秒前
七月完成签到,获得积分10
2秒前
谦让寻凝完成签到 ,获得积分10
3秒前
机灵的丸子完成签到,获得积分10
3秒前
成就的菀发布了新的文献求助10
3秒前
momo完成签到,获得积分10
4秒前
4秒前
广旭完成签到 ,获得积分10
5秒前
7秒前
krystal完成签到,获得积分10
7秒前
excellent_shit完成签到,获得积分10
7秒前
zy完成签到 ,获得积分10
7秒前
7秒前
7秒前
guojinyu完成签到,获得积分10
7秒前
安静凡旋完成签到 ,获得积分10
8秒前
柒辞完成签到,获得积分10
8秒前
烟花应助多吃蔬菜采纳,获得10
8秒前
aaa发布了新的文献求助10
9秒前
星河完成签到 ,获得积分10
9秒前
Singularity应助wakaka123采纳,获得10
10秒前
10秒前
饭老师发布了新的文献求助10
10秒前
哎哟可爱完成签到,获得积分10
10秒前
zyy发布了新的文献求助10
10秒前
11秒前
www发布了新的文献求助10
12秒前
文静的笑阳完成签到,获得积分10
12秒前
lxy2002发布了新的文献求助10
12秒前
Frieren完成签到 ,获得积分10
12秒前
qiao完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359640
关于积分的说明 10403733
捐赠科研通 3077466
什么是DOI,文献DOI怎么找? 1690304
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781