亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Electropulse-Induced Nonlinear Temperature Variation of Mg Alloy Based on Machine Learning

超参数 人工神经网络 机器学习 人工智能 极限学习机 非线性系统 材料科学 计算机科学 物理 量子力学
作者
Jinyeong Yu,Myoung‐Jae Lee,Young Hoon Moon,Yoojeong Noh,Taekyung Lee
出处
期刊:Korean Journal of Metals and Materials [The Korean Institute of Metals and Materials]
卷期号:58 (6): 413-422 被引量:13
标识
DOI:10.3365/kjmm.2020.58.6.413
摘要

Electropulse-induced heating has attracted attention due to its high energy efficiency. However, the process gives rise to a nonlinear temperature variation, which is difficult to predict using a traditional physics model. As an alternative, this study employed machine-learning technology to predict such temperature variation for the first time. Mg alloy was exposed to a single electropulse with a variety of pulse magnitudes and durations for this purpose. Nine machine-learning models were established from algorithms from artificial neural network (ANN), deep neural network (DNN), and extreme gradient boosting (XGBoost). The ANN models showed an insufficient predicting capability with respect to the region of peak temperature, where temperature varied most significantly. The DNN models were built by increasing model complexity, enhancing architectures, and tuning hyperparameters. They exhibited a remarkable improvement in predicting capability at the heating-cooling boundary as well as overall estimation. As a result, the DNN-2 model in this group showed the best prediction of nonlinear temperature variation among the machinelearning models built in this study. The XGBoost model exhibited poor predicting performance when default hyperparameters were applied. However, hyperparameter tuning of learning rates and maximum depths resulted in a decent predicting capability with this algorithm. Furthermore, XGBoost models exhibited an extreme reduction in learning time compared with the ANN and DNN models. This advantage is expected to be useful for predicting more complicated cases including various materials, multi-step electropulses, and electrically-assisted forming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Callan完成签到,获得积分10
41秒前
59秒前
1分钟前
量子星尘发布了新的文献求助50
1分钟前
火星的雪完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
eyent燕子发布了新的文献求助10
1分钟前
kaka完成签到,获得积分10
1分钟前
2分钟前
科研通AI5应助eyent燕子采纳,获得10
2分钟前
2分钟前
2分钟前
eyent燕子完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助幻之樱花33采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小二郎应助han采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
han发布了新的文献求助10
4分钟前
5分钟前
慕青应助冷酷蛋挞采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助50
5分钟前
天天快乐应助焰火在采纳,获得10
6分钟前
6分钟前
花陵完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
souther完成签到,获得积分0
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4668265
求助须知:如何正确求助?哪些是违规求助? 4048452
关于积分的说明 12520369
捐赠科研通 3741372
什么是DOI,文献DOI怎么找? 2066341
邀请新用户注册赠送积分活动 1095792
科研通“疑难数据库(出版商)”最低求助积分说明 976064