Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach

计算机科学 可扩展性 原始数据 机器学习 人工智能 架空(工程) 聚类分析 深度学习 杠杆(统计) 数据挖掘 大数据 方案(数学) 数据库 数学 数学分析 程序设计语言 操作系统
作者
Yi Liu,James J. Q. Yu,Jiawen Kang,Dusit Niyato,Shuyu Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (8): 7751-7763 被引量:611
标识
DOI:10.1109/jiot.2020.2991401
摘要

Existing traffic flow forecasting approaches by deep learning models achieve excellent success based on a large volume of datasets gathered by governments and organizations. However, these datasets may contain lots of user's private data, which is challenging the current prediction approaches as user privacy is calling for the public concern in recent years. Therefore, how to develop accurate traffic prediction while preserving privacy is a significant problem to be solved, and there is a trade-off between these two objectives. To address this challenge, we introduce a privacy-preserving machine learning technique named federated learning and propose a Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction. FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism rather than directly sharing raw data among organizations. In the secure parameter aggregation mechanism, we adopt a Federated Averaging algorithm to reduce the communication overhead during the model parameter transmission process. Furthermore, we design a Joint Announcement Protocol to improve the scalability of FedGRU. We also propose an ensemble clustering-based scheme for traffic flow prediction by grouping the organizations into clusters before applying FedGRU algorithm. Through extensive case studies on a real-world dataset, it is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models, which confirm that FedGRU can achieve accurate and timely traffic prediction without compromising the privacy and security of raw data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDD发布了新的文献求助10
刚刚
文光发布了新的文献求助10
1秒前
爱因斯坦刘刘完成签到,获得积分10
1秒前
皮凡完成签到,获得积分0
1秒前
3秒前
宗语雪完成签到,获得积分10
3秒前
first完成签到 ,获得积分10
4秒前
kook发布了新的文献求助10
4秒前
4秒前
nana发布了新的文献求助10
5秒前
5秒前
6秒前
欢呼平蓝发布了新的文献求助30
6秒前
缥缈月光完成签到,获得积分10
8秒前
8秒前
9秒前
胖虎发布了新的文献求助10
9秒前
9秒前
11秒前
负责不愁完成签到,获得积分10
11秒前
11秒前
烟花应助哈哈哈哈采纳,获得10
11秒前
11秒前
努力发布了新的文献求助10
12秒前
12秒前
dan发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
joshiii发布了新的文献求助10
14秒前
yyh发布了新的文献求助20
14秒前
星辞发布了新的文献求助10
15秒前
zln完成签到,获得积分10
15秒前
爆米花应助苹果大侠采纳,获得10
15秒前
15秒前
zheng发布了新的文献求助10
16秒前
YXHTCM发布了新的文献求助10
16秒前
王不留行完成签到,获得积分10
16秒前
ww发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297798
求助须知:如何正确求助?哪些是违规求助? 4446568
关于积分的说明 13839917
捐赠科研通 4331721
什么是DOI,文献DOI怎么找? 2377860
邀请新用户注册赠送积分活动 1373172
关于科研通互助平台的介绍 1338697