Insights into Heteroatom-Doped Graphene for Catalytic Ozonation: Active Centers, Reactive Oxygen Species Evolution, and Catalytic Mechanism

杂原子 化学 催化作用 石墨烯 激进的 光化学 单线态氧 硫黄 氧气 无机化学 有机化学 材料科学 纳米技术 戒指(化学)
作者
Zilong Song,Mengxuan Wang,Zheng Wang,Yufang Wang,Ruoyu Li,Yuting Zhang,Chao Liu,Ye Liu,Bin Xu,Fei Qi
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:53 (9): 5337-5348 被引量:132
标识
DOI:10.1021/acs.est.9b01361
摘要

To guide the design of novel graphene-based catalysts in catalytic ozonation for micropollutant degradation, the mechanism of catalytic ozonation with heteroatom-doped graphene was clarified. Reduced graphene oxide doped with nitrogen, phosphorus, boron, and sulfur atoms (N-, P-, B-, and S-rGO) were synthesized, and their catalytic ozonation performances were evaluated in the degradation of refractory organics and bromate elimination simultaneously. Doping with heteroatoms, except sulfur, significantly improved the catalytic ozonation activity of graphene. Introducing sulfur atoms destroyed the stability of graphene during ozonation, with the observed partial performance improvement caused by surface adsorption. Degradation pathways for selected refractory organics were proposed based on the intermediates identified using high-resolution Orbitrap mass spectroscopy and gas chromatographic–mass spectroscopy. Three and six new unopened intermediates were identified in benzotriazole and p-chlorobenzoic acid degradation, respectively. Roles of chemical functional groups, doped atoms, free electron, and delocalized π electron of heteroatom-doped graphene in catalytic ozonation were identified, and contributions of these active centers to the formation of reactive oxygen species (ROS), including hydroxyl radicals, superoxide radicals, singlet oxygen, and H2O2, were evaluated. A mechanism for catalytic ozonation by heteroatom-doped graphene was proposed for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木子发布了新的文献求助10
1秒前
shinysparrow应助hulala采纳,获得10
2秒前
Song发布了新的文献求助10
2秒前
2秒前
淡淡的靳完成签到,获得积分10
2秒前
小蘑菇应助huangjing采纳,获得10
3秒前
4秒前
小张同学读研版完成签到,获得积分10
7秒前
杨yang发布了新的文献求助10
8秒前
11秒前
浙江嘉兴完成签到,获得积分10
11秒前
wanci应助千万别取这个名采纳,获得20
12秒前
12秒前
Atan完成签到,获得积分10
13秒前
huangjing完成签到,获得积分10
14秒前
ZZ应助自信傲柔采纳,获得10
14秒前
脑洞疼应助小杰采纳,获得10
14秒前
15秒前
三横一竖发布了新的文献求助10
16秒前
李健应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
寻寻觅觅呢应助科研通管家采纳,获得100
17秒前
Hello应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
123发布了新的文献求助10
17秒前
18秒前
20秒前
huangjing发布了新的文献求助10
20秒前
颜路完成签到,获得积分10
20秒前
21秒前
白子完成签到,获得积分10
21秒前
22秒前
22秒前
25秒前
Mike001发布了新的文献求助10
25秒前
11发布了新的文献求助10
26秒前
之桃完成签到,获得积分10
26秒前
ZZ应助keyango采纳,获得10
26秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2411420
求助须知:如何正确求助?哪些是违规求助? 2106309
关于积分的说明 5322753
捐赠科研通 1833814
什么是DOI,文献DOI怎么找? 913812
版权声明 560875
科研通“疑难数据库(出版商)”最低求助积分说明 488598