骨细胞
骨小管
皮质骨
材料科学
化学
生物物理学
解剖
成骨细胞
生物
生物化学
体外
作者
Nina Kølln Wittig,Malene Laugesen,Mie Elholm Birkbak,Fiona Linnea Bach-Gansmo,Alexandra Pacureanu,Stefan Bruns,Mette Høegh Wendelboe,Annemarie Brüel,Henning Osholm Sørensen,Jesper Skovhus Thomsen,Henrik Birkedal
出处
期刊:ACS Nano
[American Chemical Society]
日期:2019-05-16
卷期号:13 (6): 6421-6430
被引量:47
标识
DOI:10.1021/acsnano.8b08478
摘要
The osteocyte lacuno-canalicular network (LCN) is essential for bone remodeling because osteocytes regulate cell recruitment. This has been proposed to occur through liquid-flow-induced shear forces in the canaliculi. Models of the LCN have thus far assumed that it contains canaliculi connecting the osteocyte lacunae. However, here, we reveal that enlarged spaces occur at places where several canaliculi cross; we name these spaces canalicular junctions. We characterize them in detail within mice cortical bone using synchrotron nanotomography at two length scales, with 50 and 130 nm voxel size, and show that canalicular junctions occur at a density similar to that of osteocyte lacunae and that canalicular junctions tend to cluster. Through confocal laser scanning microscopy, we show that canalicular junctions are widespread as we have observed them in cortical bone from several species, even though the number density of the canalicular junctions was not universal. Fluid flow simulations of a simple model system with and without a canalicular junction clearly show that liquid mass transport and flow velocities are altered by the presence of canalicular junctions. We suggest that these canalicular junctions may play an important role in osteocyte communication and possibly also in canalicular fluid flow. Therefore, we believe that they constitute an important component in the bone osteocyte network.
科研通智能强力驱动
Strongly Powered by AbleSci AI