材料科学
超级电容器
二硫化钼
自愈水凝胶
纳米技术
导电聚合物
电极
导电体
电解质
石墨烯
化学工程
电化学
聚合物
复合材料
高分子化学
化学
工程类
物理化学
作者
Congcong Liu,Xiaoli Zhao,Shengping Wang,Yijie Zhang,Ge Wang,Jinjin Li,Jing Cao,Jingying Tao,Xiaowei Yang
标识
DOI:10.1021/acsaem.9b00699
摘要
Conductive hydrogels with fluidic nanochannels represent one of the most promising capacitive electrodes due to their highly porous structure for the rapid kinetics of electrolyte ion transport. Recent advances in conducting polymers, graphene, and transition metal carbide (MXene)-based hydrogel materials have indicated appealing potential in electrochemical energy storage. The construction of conductive transition-metal dichalcogenide (TMD) hydrogels is still a challenge. In this work, by understanding the colloidal properties of solution-processable 1T molybdenum disulfide (MoS2) nanosheets, we develop a surface-charge-control strategy by changing the electrostatic repulsions for fabricating a freestanding conductive MoS2 hydrogel with three-dimensional (3D) porous structure. Given the interpenetrating ionic transport network, the conductive MoS2 hydrogel, as the electrode of symmetric supercapacitors, exhibits an extremely small time constant of 0.09 s and high power density of 7.0 × 104 W kg–1 under a large current density of 50 A g–1, which is superior to the conventional 2D-MoS2 electrode.
科研通智能强力驱动
Strongly Powered by AbleSci AI