A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease

分割 人工智能 深度学习 体素 Sørensen–骰子系数 计算机科学 豪斯多夫距离 掷骰子 切割 冲程(发动机) 模式识别(心理学) 人工神经网络 卷积神经网络 图像分割 机器学习 磁共振成像 医学 神经影像学 数学 统计
作者
Michelle Livne,Jana Rieger,Orhun Utku Aydin,Abdel Aziz Taha,E. Akay,Tabea Kossen,Jan Sobesky,John D. Kelleher,Kristian Hildebrand,Dietmar Frey,Vince I. Madai
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:13 被引量:162
标识
DOI:10.3389/fnins.2019.00097
摘要

Brain vessel status is a promising biomarker for better prevention and treatment in cerebrovascular disease. However, classic rule-based vessel segmentation algorithms need to be hand-crafted and are insufficiently validated. A specialized deep learning method-the U-net-is a promising alternative. Using labeled data from 66 patients with cerebrovascular disease, the U-net framework was optimized and evaluated with three metrics: Dice coefficient, 95% Hausdorff distance (95HD) and average Hausdorff distance (AVD). The model performance was compared with the traditional segmentation method of graph-cuts. Training and reconstruction was performed using 2D patches. A full and a reduced architecture with less parameters were trained. We performed both quantitative and qualitative analyses. The U-net models yielded high performance for both the full and the reduced architecture: A Dice value of ~0.88, a 95HD of ~47 voxels and an AVD of ~0.4 voxels. The visual analysis revealed excellent performance in large vessels and sufficient performance in small vessels. Pathologies like cortical laminar necrosis and a rete mirabile led to limited segmentation performance in few patients. The U-net outperfomed the traditional graph-cuts method (Dice ~0.76, 95HD ~59, AVD ~1.97). Our work highly encourages the development of clinically applicable segmentation tools based on deep learning. Future works should focus on improved segmentation of small vessels and methodologies to deal with specific pathologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
1秒前
wyuanhu完成签到,获得积分10
1秒前
科研go完成签到,获得积分10
1秒前
研友_ZegMrL完成签到,获得积分10
1秒前
猪猪女孩完成签到,获得积分10
1秒前
感动芷珍完成签到,获得积分10
2秒前
caoyulongchn完成签到,获得积分10
4秒前
研友_LpvQlZ完成签到,获得积分10
4秒前
小丽完成签到,获得积分10
5秒前
luokm完成签到,获得积分10
5秒前
victhr完成签到,获得积分10
6秒前
xss完成签到 ,获得积分10
6秒前
guan完成签到 ,获得积分10
6秒前
7秒前
lsc完成签到 ,获得积分10
7秒前
淳于安筠完成签到,获得积分10
7秒前
duzhi完成签到 ,获得积分10
7秒前
行舟完成签到,获得积分10
8秒前
科研通AI6应助gggggggbao采纳,获得10
9秒前
踏实的酸奶完成签到,获得积分10
9秒前
mito完成签到,获得积分10
10秒前
今后应助小莨采纳,获得10
10秒前
浮浮世世应助wp4455777采纳,获得30
12秒前
12秒前
tong完成签到,获得积分10
13秒前
虚心的幻梅完成签到 ,获得积分10
13秒前
13秒前
wuludie应助catherine采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
PDIF-CN2发布了新的文献求助10
14秒前
广州东站完成签到,获得积分10
15秒前
xxfsx应助qingmoheng采纳,获得10
15秒前
陈治岐完成签到,获得积分10
15秒前
独特乘风完成签到,获得积分10
15秒前
shaangu623发布了新的文献求助30
16秒前
pepper完成签到,获得积分10
16秒前
tca2204完成签到,获得积分10
16秒前
123完成签到 ,获得积分10
16秒前
失眠的数据线完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482726
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389653
捐赠科研通 4512735
什么是DOI,文献DOI怎么找? 2473199
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861