数学
特征向量
有界函数
多重性(数学)
兰姆达
领域(数学分析)
非线性系统
数学分析
分岔理论
区间(图论)
数学物理
分叉
组合数学
量子力学
物理
作者
Patricio Felmer,Juan J. Torres
标识
DOI:10.57262/ade/1356651635
摘要
Consider the nonlinear Sturm-Liouville eigenvalue problem \begin{align*} u''-Q(x)u & + \lambda(Mu+f(u))=0,\qquad x\in{\mathbb R }, \\ \lim\limits_{|x|\to\infty} u(x) & =\lim\limits_{|x|\to\infty} u'(x) =0, \end{align*} where the potential $Q$ is positive and coercive, the function $f(s)$ behaves like $s^p$, $p>1$, $M$ is a positive constant and $\lambda$ is a positive parameter. When the domain is a bounded interval, Rabinowitz global bifurcation theory applies to this problem, showing the existence of unbounded branches of nontrivial solutions. Even more, Rabinowitz proved that the branches bend back. This last fact has as a consequence a multiplicity result for solutions of a related nonlinear Schr\"odinger equation. In this paper we prove that this result holds true when the domain is ${\mathbb R }$. The main point of the article is the proof that the branches bend back, the place where the noncompactness of ${\mathbb R }$ poses a difficulty.
科研通智能强力驱动
Strongly Powered by AbleSci AI