亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study

医学 格拉斯哥昏迷指数 机器学习 败血症 队列 特征选择 曲线下面积 人工智能 梯度升压 重症监护医学 随机森林 内科学 计算机科学 外科
作者
Chang Hu,Lu Li,Weipeng Huang,Tong Wu,Qiancheng Xu,Juan Liu,Bo Hu
出处
期刊:Infectious Diseases and Therapy [Adis, Springer Healthcare]
卷期号:11 (3): 1117-1132 被引量:90
标识
DOI:10.1007/s40121-022-00628-6
摘要

This study aimed to develop and validate an interpretable machine-learning model based on clinical features for early predicting in-hospital mortality in critically ill patients with sepsis.We enrolled all patients with sepsis in the Medical Information Mart for Intensive Care IV (MIMIC-IV, v.1.0) database from 2008 to 2019. Lasso regression was used for feature selection. Seven machine-learning methods were applied to develop the models. The best model was selected based on its accuracy and area under curve (AUC) in the validation cohort. Furthermore, we employed the SHapley Additive exPlanations (SHAP) method to illustrate the effects of the features attributed to the model, and to analyze how the individual features affect the output of the model, and to visualize the Shapley value for a single individual.In total, 8,817 patients with sepsis were eligible for participation, the median age was 66.8 years (IQR, 55.9-77.1 years), and 3361 of 8817 participants (38.1%) were women. After selection, 25 of a total 57 clinical parameters collected on day 1 after ICU admission remained associated with prognosis and were used for developing the machine-learning models. Among seven constructed models, the eXtreme Gradient Boosting (XGBoost) model achieved the best performance with an AUC of 0.884 and an accuracy of 89.5% in the validation cohort. Feature importance analysis showed that Glasgow Coma Scale (GCS) score, blood urea nitrogen, respiratory rate, urine output, and age were the top 5 features of the XGBoost model with the greatest impact. Furthermore, SHAP force analysis illustrated how the constructed model visualized the individualized prediction of death.We have demonstrated the potential of machine-learning approaches for predicting outcome early in patients with sepsis. The SHAP method could improve the interpretability of machine-learning models and help clinicians better understand the reasoning behind the outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
5秒前
安静复天发布了新的文献求助10
10秒前
iorpi完成签到,获得积分10
31秒前
传奇3应助iorpi采纳,获得10
38秒前
安静复天完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
55秒前
量子星尘发布了新的文献求助10
1分钟前
Aphelios完成签到,获得积分20
1分钟前
1分钟前
yyds发布了新的文献求助10
1分钟前
天天天才完成签到,获得积分10
1分钟前
Emy完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
未夕晴完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
不去明知山完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助DDDD采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
DDDD发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
tt完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
诺一44发布了新的文献求助10
4分钟前
完美的书雁完成签到 ,获得积分10
4分钟前
5分钟前
AAA发布了新的文献求助10
5分钟前
科研通AI2S应助勤恳的依珊采纳,获得10
5分钟前
Zzz_Carlos完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865715
求助须知:如何正确求助?哪些是违规求助? 3408265
关于积分的说明 10657118
捐赠科研通 3132257
什么是DOI,文献DOI怎么找? 1727494
邀请新用户注册赠送积分活动 832338
科研通“疑难数据库(出版商)”最低求助积分说明 780220