Automated prostate cancer grading and diagnosis system using deep learning-based Yolo object detection algorithm

计算机科学 前列腺癌 人工智能 前列腺活检 试验装置 目标检测 模式识别(心理学) 数据集 计算机视觉 癌症 医学 内科学
作者
Mehmet Emin Salman,Gözde Çakırsoy Çakar,Jahongir Azimjonov,Mustafa Köşem,İsmail Hakkı Cedi̇moğlu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:201: 117148-117148 被引量:55
标识
DOI:10.1016/j.eswa.2022.117148
摘要

Developing an artificial intelligence-based prostate cancer detection and diagnosis system that can automatically determine important regions and accurately classify the determined regions on an input biopsy image. The Yolo general-purpose object detection algorithm was utilized to detect important regions (for the localization task) and to grade the detected regions (for the classification task). The algorithm was re-trained with our prostate cancer dataset. The dataset was created by annotating 500 real prostate tissue biopsy images. The dataset was split into train/test parts as 450/50 real prostate tissue images, respectively, before the data augmentation process. Next, the training set consisting of 450 labeled biopsy images was pre-processed with the data augmentation method. This way, the number of biopsy images in the dataset was increased from 450 to 1776. Then, the algorithm was trained with the dataset and the automatic prostate cancer detection and diagnosis tool was developed. The developed tool was tested with two test sets. The first test set contains 50 images that are similar to the train set. Hence, 97% detection and classification accuracy has been achieved. The second test set contains 137 completely different real prostate tissue biopsy images, thus, 89% detection accuracy has been achieved. In this study, an automatic prostate cancer detection and diagnosis tool was developed. The test results show that high-accuracy (high-performance) prostate cancer diagnosis tools can be developed using AI (computer vision) methods such as object detection algorithms. These systems can decrease the inter-observer variability among pathologists, and help prevent the time delay in the diagnosis phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助务实的犀牛采纳,获得10
3秒前
乐观的忘幽完成签到,获得积分10
3秒前
Owen应助Hzyaccept采纳,获得10
3秒前
咩咩咩发布了新的文献求助30
3秒前
求知小生完成签到 ,获得积分10
6秒前
7秒前
7秒前
七里香完成签到 ,获得积分10
11秒前
11秒前
邓娇叶发布了新的文献求助10
12秒前
龙梦发布了新的文献求助10
13秒前
13秒前
CDQ完成签到,获得积分10
13秒前
zstyry9998发布了新的文献求助10
16秒前
寒生发布了新的文献求助10
16秒前
19秒前
21秒前
21秒前
L_etoile完成签到,获得积分10
22秒前
李爱国应助龙梦采纳,获得10
22秒前
24秒前
fatcat发布了新的文献求助30
24秒前
zstyry9998完成签到,获得积分10
24秒前
高兴的小完成签到,获得积分10
25秒前
yueyue完成签到,获得积分20
27秒前
石金胜发布了新的文献求助10
27秒前
27秒前
echo完成签到 ,获得积分10
29秒前
无奈的代珊完成签到 ,获得积分10
30秒前
jolin发布了新的文献求助10
30秒前
猪猪hero应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451