级联
光催化
选择性
三元运算
异质结
电子转移
材料科学
催化作用
动力学
相(物质)
化学工程
化学
光化学
物理
光电子学
有机化学
计算机科学
量子力学
工程类
程序设计语言
作者
Yimeng Zhou,Qianjin Ye,Xiangli Shi,Qiong Zhang,Zhongkai Xie,Di Li,Deli Jiang
标识
DOI:10.1016/j.cej.2022.137485
摘要
Due to the high stability of CO2 and slow multi-electron transfer kinetics, photocatalytic reduction of CO2 into multi-electron product CH4 with high selectivity is still a big challenge. Herein, multiphasic WS2 nanosheets composed of metallic 1 T phase and semiconducting 2H phase were integrated with TiO2 nanoparticles to construct a novel ternary heterojunction photocatalyst (1 T/2H-WS2/TiO2) for selective photocatalytic CO2 reduction into CH4. In this heterojunction photocatalyst, an efficient cascade charge transfer channel from TiO2 to 2H-WS2 and subsequently transferred to 1 T-WS2 is formed, which accelerates the charge separation and enables enough electrons enriched on the surface of 1 T-WS2 acting simultaneously as the co-catalyst, resulting in the high selectivity of CH4. The optimized 1 T/2H-WS2/TiO2 photocatalyst showed a higher CH4 yield of 36.44 μmol·g−1·h−1 with a selectivity reaching 94.2%, which was much higher than those of TiO2 (41.9%), 1 T-WS2/TiO2 (80.6%) and 2H-WS2/TiO2 (13.4%). This novel design provides a valuable research reference for regulating the photocatalytic CO2 reduction selectivity via steering the cascade multi-step charge transfer pathways through phase engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI