Underwater image enhancement based on color restoration and dual image wavelet fusion

人工智能 计算机视觉 图像复原 计算机科学 水下 小波 对偶(语法数字) 图像融合 图像(数学) 图像处理 地质学 艺术 海洋学 文学类
作者
Yifan Huang,Fei Yuan,Fengqi Xiao,En Cheng
出处
期刊:Signal Processing-image Communication [Elsevier BV]
卷期号:107: 116797-116797 被引量:12
标识
DOI:10.1016/j.image.2022.116797
摘要

Due to the severe light absorption and scattering, underwater images often exhibit problems such as low contrast, detail blurring, color attenuation, and low illumination. To address these issues, this paper presents a two-step strategy based on color restoration and image fusion by combining deep learning and conventional image enhancement technologies to improve the visual performance of underwater images. First, an adaptive color compensation method is proposed to make up for the loss of severely attenuated channels. Color restoration is further implemented to estimate the illuminant color cast caused by the selective attenuation of light. Since the underwater image after color restoration still suffers from scattering and blurring, an effective method based on dual image wavelet fusion (DIWF) and Generative Adversarial Network (GAN) is designed to further enhance the edge details and improve the contrast of the color restored image. Experiments demonstrate that the proposed method significantly outperforms several state-of-the-arts in both qualitative and quantitative qualities. The approach can achieve better performance of color restoration, blur removal, and low illumination enhancement. • The paper presents an approach by integrating data-driven deep learning and hand-crafted image enhancement for the single underwater image enhancement. We argue that it is impractical only to use one method to deal with the complex underwater imaging environment. By combining deep learning and image enhancement technology, the model can process images obtained in various underwater scenes. • The paper presents an adaptive color compensation method to make up for the loss of severely attenuated channels, and color restoration is further implemented to estimate the illuminant color cast caused by the selective attenuation of light. • Since the underwater image after color restoration still suffers from scattering and blurring, an effective method based on dual image wavelet fusion (DIWF) and Generative Adversarial Network (GAN) is designed to further enhance the edge details and improve the contrast of the color restored image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭小胖14完成签到,获得积分10
刚刚
小Q啊啾完成签到,获得积分20
刚刚
HDY完成签到,获得积分10
刚刚
可靠若云完成签到,获得积分10
1秒前
zSmart发布了新的文献求助10
1秒前
2秒前
3秒前
小黄鸭呀完成签到,获得积分10
3秒前
dogontree完成签到,获得积分10
4秒前
zhouyong完成签到,获得积分10
4秒前
Hello应助cmh采纳,获得10
4秒前
pcr163应助felix采纳,获得50
4秒前
小杨爱吃羊完成签到 ,获得积分10
5秒前
进击的巨人完成签到 ,获得积分10
5秒前
C57完成签到 ,获得积分10
5秒前
彧辰完成签到 ,获得积分10
5秒前
卖萌的秋田完成签到,获得积分10
5秒前
Billy发布了新的文献求助10
6秒前
闪闪的衫发布了新的文献求助10
6秒前
XIeXIe完成签到,获得积分10
7秒前
卡卡卡卡卡住了完成签到,获得积分10
7秒前
科研小笨猪完成签到,获得积分10
7秒前
夏侯以旋完成签到,获得积分10
7秒前
小魏哥完成签到,获得积分10
8秒前
穆仰完成签到,获得积分10
9秒前
sheng发布了新的文献求助10
9秒前
9秒前
小马甲应助zSmart采纳,获得10
9秒前
qqqq完成签到,获得积分10
10秒前
xfy完成签到,获得积分10
10秒前
11秒前
山羊8201给山羊8201的求助进行了留言
11秒前
11秒前
稳重奇异果完成签到,获得积分10
11秒前
常常完成签到,获得积分10
12秒前
yy完成签到,获得积分10
13秒前
活力听兰完成签到,获得积分10
13秒前
14秒前
Kindy完成签到,获得积分10
14秒前
坚强觅珍完成签到 ,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359559
关于积分的说明 10403403
捐赠科研通 3077404
什么是DOI,文献DOI怎么找? 1690297
邀请新用户注册赠送积分活动 813734
科研通“疑难数据库(出版商)”最低求助积分说明 767781