Prediction of the quality properties and maturity of apricot by laser light backscattering imaging

偏最小二乘回归 均方误差 成熟 相关系数 数学 决定系数 人工神经网络 生物系统 化学 人工智能 计算机科学 统计 食品科学 生物
作者
Mansoureh Mozaffari,Sina Sadeghi,Narmela Asefi
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:186: 111842-111842 被引量:7
标识
DOI:10.1016/j.postharvbio.2022.111842
摘要

The maturity level plays an essential role in the quality and shelf life of apricot. The present research aims to investigate the applicability and accuracy of the non-destructive laser light backscattering imaging method to predict the quality properties of apricot during ripening. The backscattering images of apricots were acquired at 650 nm in six stages of ripening. The images were segmented by two different thresholding techniques, and several space domain features were extracted from the segmented images. Artificial neural network (ANN), partial least squares regression (PLSR), and principle component analysis-artificial neural network (PCA-ANN) models were developed to predict the firmness and total soluble solids (TSS) of apricot using each of the extracted image features and their combination as input for the prediction models. Results revealed a high correlation between the extracted features from the backscattering images and the quality parameters of apricot during ripening. Modeling using ANN recorded better performance than PLSR. The highest coefficient of determination (R2) and the lowest root mean squared error (RMSE) of cross-validation were achieved with ANN as R2CV = 0.974, RMSECV = 3.482 and R2CV = 0.963, RMSECV = 1.146 for firmness and TSS, respectively. The results confirmed that the laser backscattering imaging method was successful in predicting the quality properties of apricot during ripening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助Yinkris采纳,获得10
刚刚
snow完成签到,获得积分10
2秒前
逆蝶发布了新的文献求助30
4秒前
顽主完成签到,获得积分10
4秒前
tt完成签到 ,获得积分10
4秒前
科研通AI5应助lxr2采纳,获得10
4秒前
阿枫完成签到 ,获得积分10
5秒前
调皮的沛萍完成签到,获得积分10
6秒前
星辰大海应助qiulong采纳,获得10
7秒前
7秒前
8秒前
可爱的函函应助zy采纳,获得10
8秒前
郭宇关注了科研通微信公众号
9秒前
科研通AI2S应助CYY采纳,获得10
9秒前
无限的寄真完成签到 ,获得积分10
9秒前
咖啡先生发布了新的文献求助10
11秒前
ShiRz发布了新的文献求助10
13秒前
领导范儿应助乙醇采纳,获得10
14秒前
辉子完成签到,获得积分10
16秒前
七曜发布了新的文献求助10
18秒前
吃花生酱的猫完成签到,获得积分10
18秒前
科研通AI5应助风趣的绮菱采纳,获得10
18秒前
19秒前
MM发布了新的文献求助10
20秒前
彭于晏应助CJPerformance采纳,获得10
21秒前
22秒前
小二郎应助康康XY采纳,获得10
23秒前
Jasper应助咖啡先生采纳,获得10
23秒前
24秒前
冰魂应助郭宇采纳,获得10
26秒前
wanci应助刘十六采纳,获得10
26秒前
乙醇发布了新的文献求助10
27秒前
28秒前
冰魂应助Ryy采纳,获得10
30秒前
虚幻又莲完成签到,获得积分20
31秒前
33秒前
哈哈发布了新的文献求助10
33秒前
snow发布了新的文献求助10
34秒前
35秒前
辉子发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976