Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning

计算机科学 分割 人工智能 任务(项目管理) 一致性(知识库) 机器学习 半监督学习 约束(计算机辅助设计) 模式识别(心理学) 数学 几何学 经济 管理
作者
Kaiping Wang,Bo Zhan,Chen Zu,Xi Wu,Jiliu Zhou,Luping Zhou,Yan Wang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102447-102447 被引量:119
标识
DOI:10.1016/j.media.2022.102447
摘要

Due to the difficulty in accessing a large amount of labeled data, semi-supervised learning is becoming an attractive solution in medical image segmentation. To make use of unlabeled data, current popular semi-supervised methods (e.g., temporal ensembling, mean teacher) mainly impose data-level and model-level consistency on unlabeled data. In this paper, we argue that in addition to these strategies, we could further utilize auxiliary tasks and consider task-level consistency to better excavate effective representations from unlabeled data for segmentation. Specifically, we introduce two auxiliary tasks, i.e., a foreground and background reconstruction task for capturing semantic information and a signed distance field (SDF) prediction task for imposing shape constraint, and explore the mutual promotion effect between the two auxiliary and the segmentation tasks based on mean teacher architecture. Moreover, to handle the potential bias of the teacher model caused by annotation scarcity, we develop a tripled-uncertainty guided framework to encourage the three tasks in the student model to learn more reliable knowledge from the teacher. When calculating uncertainty, we propose an uncertainty weighted integration (UWI) strategy for yielding the segmentation predictions of the teacher. In addition, following the advance of unsupervised learning in leveraging the unlabeled data, we also incorporate a contrastive learning based constraint to help the encoders extract more distinct representations to promote the medical image segmentation performance. Extensive experiments on the public 2017 ACDC dataset and the PROMISE12 dataset have demonstrated the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fwl完成签到 ,获得积分10
刚刚
刚刚
duwurong发布了新的文献求助10
刚刚
缥缈的万声完成签到,获得积分10
刚刚
1秒前
香蕉觅云应助starryxm采纳,获得10
1秒前
1秒前
文静半鬼完成签到,获得积分10
1秒前
罗梓填发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI5应助雅光采纳,获得50
2秒前
ACEmeng发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Owen应助怿愀采纳,获得10
6秒前
奋斗雨雪完成签到,获得积分10
6秒前
6秒前
见贤思齐发布了新的文献求助10
6秒前
kingdomjust发布了新的文献求助10
7秒前
111发布了新的文献求助10
7秒前
zzzyyyuuu完成签到 ,获得积分10
7秒前
meta发布了新的文献求助10
7秒前
DOKI发布了新的文献求助10
8秒前
8秒前
yyzhou完成签到 ,获得积分10
8秒前
爱吃肥牛发布了新的文献求助10
9秒前
柒年啵啵发布了新的文献求助10
9秒前
123完成签到,获得积分10
10秒前
H1完成签到,获得积分10
10秒前
tiantiantian完成签到,获得积分10
11秒前
酷酷的雁易完成签到,获得积分20
11秒前
11秒前
高兴的易形完成签到,获得积分10
11秒前
Akim应助无心的夏烟采纳,获得10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846