Development and validation of a novel survival prediction model for newly diagnosed lower-grade gliomas

比例危险模型 一致性 队列 胶质瘤 医学 肿瘤科 内科学 列线图 生存分析 癌症研究
作者
Qiang Zhu,Yuan Liang,Ziwen Fan,Yukun Liu,Chunyao Zhou,Hong Zhang,Lei He,Tianshi Li,Jianing Yang,Yanguang Zhou,Jiaxiang Wang,Lei Wang
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:52 (4): E13-E13 被引量:3
标识
DOI:10.3171/2022.1.focus21596
摘要

OBJECTIVE Diffuse gliomas are the most common primary gliomas with a poor prognosis. This study aimed to develop and validate prognostic models for predicting the survival probability in newly diagnosed lower-grade glioma (LGG) patients. METHODS Detailed data were obtained for newly diagnosed LGG from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) cohorts. Survival was assessed using Cox proportional hazards regression with adjustment for known prognostic factors. The model was established using the TCGA cohort, and independently validated using the CGGA cohort, to predict the 3-, 5-, and 10-year survival probabilities of patients. RESULTS Data from 293 patients with newly diagnosed LGG from the TCGA cohort were used to establish a prognostic model, and from 232 patients with primary LGG in the CGGA cohort to validate the model. Age, tumor grade, molecular subtype, tumor resection, and preoperative neurological deficits were included in the prediction model. The Cox regression model had a satisfactory corrected concordance index of 0.8508, 0.8510, and 0.8516 in the internal bootstrap validation at 3, 5, and 10 years, respectively. The calibration plots demonstrated high consistency of the predicted and observed outcomes. The CGGA cohort was used for external validation and showed satisfactory discrimination of 0.7776, 0.7682, and 0.7051 at 3, 5, and 10 years, respectively. The calibration plots demonstrated an acceptable calibration capability in the external validation. CONCLUSIONS This study established and validated a prognostic model to predict the survival probability of patients with newly diagnosed LGG. The model performed well in discrimination and calibration with ease of use, speed, accessibility, interpretability, and generalizability. An easily used nomogram based on the Cox model was established for clinical application. Moreover, a free, easy-to-use software interface based on the nomogram is provided online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的紫丝完成签到,获得积分10
1秒前
大气怜烟发布了新的文献求助10
2秒前
catherine发布了新的文献求助10
3秒前
健身哥发布了新的文献求助10
3秒前
zzz发布了新的文献求助30
4秒前
长江长完成签到,获得积分10
4秒前
阿卓卓宇宙最可爱完成签到,获得积分20
5秒前
英姑应助qsxy采纳,获得10
7秒前
蓝多多应助有为采纳,获得20
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
echo完成签到 ,获得积分10
11秒前
MrTStar发布了新的文献求助30
12秒前
12秒前
生命科学的第一推动力完成签到 ,获得积分10
13秒前
14秒前
16秒前
humorlife完成签到,获得积分10
16秒前
loulan完成签到,获得积分10
16秒前
zycdx3906发布了新的文献求助10
17秒前
17秒前
帅气凝云发布了新的文献求助10
19秒前
喵喵666完成签到,获得积分10
20秒前
catherine完成签到,获得积分10
20秒前
wanci应助澳大利亚采纳,获得10
22秒前
桐桐应助白樱恋曲采纳,获得10
22秒前
D调的华丽完成签到,获得积分10
23秒前
是猪毛啊完成签到,获得积分10
24秒前
cc发布了新的文献求助10
25秒前
汉堡包应助可乐采纳,获得10
25秒前
25秒前
科研通AI2S应助帅气凝云采纳,获得10
25秒前
啊啊啊啊啊完成签到,获得积分20
27秒前
27秒前
28秒前
再休息一分钟完成签到,获得积分10
28秒前
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101040
求助须知:如何正确求助?哪些是违规求助? 3638835
关于积分的说明 11531360
捐赠科研通 3347581
什么是DOI,文献DOI怎么找? 1839713
邀请新用户注册赠送积分活动 906964
科研通“疑难数据库(出版商)”最低求助积分说明 824156