Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning With Shapley Values

计算机科学 强化学习 人工智能 背景(考古学) 夏普里值 机器学习 博弈论 数理经济学 运筹学 经济 数学 古生物学 生物
作者
Alexandre Heuillet,Fabien Couthouis,Natalia Díaz-Rodríguez
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 59-71 被引量:46
标识
DOI:10.1109/mci.2021.3129959
摘要

While Explainable Artificial Intelligence (XAI) is increasingly expanding more areas of application, little has been applied to make deep Reinforcement Learning (RL) more comprehensible.As RL becomes ubiquitous and used in critical and general public applications, it is essential to develop methods that make it better understood and more interpretable.This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values, a game theory concept used in XAI that successfully explains the rationale behind decisions taken by Machine Learning algorithms.Through testing common assumptions of this technique in two cooperation-centered socially challenging multi-agent environments environments, this article argues that Shapley values are a pertinent way to evaluate the contribution of players in a cooperative multi-agent RL context.To palliate the high overhead of this method, Shapley values are approximated using Monte Carlo sampling.Experimental results on Multiagent Particle and Sequential Social Dilemmas show that Shapley values succeed at estimating the contribution of each agent.These results could have implications that go beyond games in economics, (e.g., for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints).They also expose how Shapley values only give general explanations about a model and cannot explain a single run, episode nor justify precise actions taken by agents.Future work should focus on addressing these critical aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廉山芙发布了新的文献求助10
1秒前
1秒前
义气珩完成签到,获得积分10
1秒前
领导范儿应助优秀不愁采纳,获得10
1秒前
2秒前
兰兰发布了新的文献求助10
2秒前
感谢Yunny转发科研通微信,获得积分50
2秒前
2秒前
3秒前
子车定帮完成签到,获得积分10
4秒前
扑火退羽完成签到,获得积分10
4秒前
森林木完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
404发布了新的文献求助10
5秒前
肖的花园发布了新的文献求助10
6秒前
xxggyy007完成签到 ,获得积分10
6秒前
Lu_ckilly完成签到 ,获得积分10
6秒前
搜集达人应助Joshua采纳,获得10
6秒前
感谢干净山柳转发科研通微信,获得积分50
7秒前
坚强的赛凤完成签到,获得积分10
7秒前
优秀不愁完成签到,获得积分20
7秒前
甜甜沛蓝发布了新的文献求助10
7秒前
Jirobai发布了新的文献求助10
7秒前
7秒前
风浪里完成签到,获得积分10
8秒前
9秒前
魔女发布了新的文献求助30
9秒前
为学日益发布了新的文献求助10
9秒前
iNk应助阿科采纳,获得20
9秒前
9秒前
EatFish发布了新的文献求助20
9秒前
SQ完成签到,获得积分20
10秒前
爱学习完成签到,获得积分10
10秒前
感谢梧寂转发科研通微信,获得积分50
10秒前
开放的黑猫完成签到,获得积分10
10秒前
么么么完成签到 ,获得积分10
10秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786195
求助须知:如何正确求助?哪些是违规求助? 3331852
关于积分的说明 10252592
捐赠科研通 3047153
什么是DOI,文献DOI怎么找? 1672437
邀请新用户注册赠送积分活动 801287
科研通“疑难数据库(出版商)”最低求助积分说明 760140