MVE-FLK: A multi-task legal judgment prediction via multi-view encoder fusing legal keywords

计算机科学 编码器 判决 人工智能 任务(项目管理) 背景(考古学) 变压器 保险丝(电气) 机器学习 电压 工程类 生物 操作系统 电气工程 古生物学 系统工程
作者
Shuxin Yang,Suxin Tong,Guixiang Zhu,Jie Cao,Youquan Wang,Zhengfa Xue,Hongliang Sun,Wen Yu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:239: 107960-107960 被引量:19
标识
DOI:10.1016/j.knosys.2021.107960
摘要

L egal J udgment P rediction ( LJP ) aims to predict the judgment result based on the fact description of a criminal case, and is gradually becoming a hot research topic in the legal realm. Generally, a classic LJP contains three subtasks, i.e., applicable law article prediction, charge prediction, and term of penalty prediction. In real-world scenarios, both charge prediction and applicable law article prediction are actually the tasks of multi-class classification with multi-label learning. However, most existing studies model them as the problems of multi-class classification with single-label learning. Besides, they only consider the context of the fact description, and ignore the exploitation of effective keywords that are widely existed in abundant law articles. To fill the above gaps, we propose a novel multi-task legal judgment prediction framework via multi-view encoder fusing legal keywords, named MVE-FLK, to jointly model multiple subtasks in LJP. Specifically, the multi-view encoder is the core module of MVE-FLK, in this module, we devise a word and sentence encoder (WSE) with an attention mechanism to fuse legal keywords. And then, we develop a multi-view attention network to combine WSE with classic Transformer and DAN (Deep Averaging Network) for encoding the case from multiple views. After that, we propose a multi-task prediction module by developing a novel keywords fusing approach to enhance the performance of multi-task prediction. In addition, we devise a unique prediction principle for each subtask at a fine-grained level, which effectively improves the performance of subtasks. The experimental results on two real-life legal datasets show that our model yields significant prediction performance advantages over six competitive methods. • Taking full advantage of existing law articles is critical to the task of legal judgment prediction. • A novel multi-task legal judgment prediction framework via multi-view encoder fusing legal (MVE-FLK) is proposed for legal judgment prediction (LJP). • MVE-FLK is appropriate for the task of multi-class classification with multi-label learning. • The experimental results verify the effectiveness of MVE-FLK for the task of LJP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Wxs66采纳,获得10
刚刚
mmyhn发布了新的文献求助10
1秒前
swallow发布了新的文献求助10
1秒前
顾矜应助文刀采纳,获得10
2秒前
4秒前
6秒前
阿司匹林完成签到,获得积分10
7秒前
ffffffflzx666发布了新的文献求助10
8秒前
不吃橘子发布了新的文献求助10
8秒前
8秒前
慕青应助二重音采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
杨77完成签到,获得积分10
10秒前
积极问晴发布了新的文献求助10
12秒前
13秒前
杨77发布了新的文献求助10
14秒前
14秒前
低调点行吗完成签到,获得积分10
17秒前
思源应助CYCY采纳,获得10
18秒前
18秒前
大板栗完成签到,获得积分20
18秒前
茗泠发布了新的文献求助30
18秒前
文刀发布了新的文献求助10
21秒前
21秒前
www发布了新的文献求助20
21秒前
22秒前
ffffffflzx666完成签到,获得积分10
23秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
linkman应助科研通管家采纳,获得10
24秒前
moon发布了新的文献求助10
24秒前
无限猫咪完成签到 ,获得积分10
26秒前
丘比特应助翻似烂柯人采纳,获得10
27秒前
隐形曼青应助man采纳,获得10
27秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291790
求助须知:如何正确求助?哪些是违规求助? 3818659
关于积分的说明 11958050
捐赠科研通 3462080
什么是DOI,文献DOI怎么找? 1898968
邀请新用户注册赠送积分活动 947374
科研通“疑难数据库(出版商)”最低求助积分说明 850156