控制器(灌溉)
人工神经网络
卡车
控制工程
过程(计算)
计算机科学
磁道(磁盘驱动器)
码头
非线性系统
控制(管理)
PID控制器
多样性(控制论)
控制系统
控制理论(社会学)
人工智能
工程类
温度控制
汽车工程
电气工程
物理
操作系统
生物
量子力学
海洋工程
农学
作者
Derrick Nguyen,Bernard Widrow
出处
期刊:IEEE control systems magazine
[Institute of Electrical and Electronics Engineers]
日期:1990-04-01
卷期号:10 (3): 18-23
被引量:854
摘要
It is shown that a neural network can learn of its own accord to control a nonlinear dynamic system. An emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. The controller, another multilayered neural network, next learns to control the emulator. The self-trained controller is then used to control the actual dynamic system. The learning process continues as the emulator and controller improve and track the physical process. An example is given to illustrate these ideas. The 'truck backer-upper', a neural network controller that steers a trailer truck while the truck is backing up to a loading dock, is demonstrated. The controller is able to guide the truck to the dock from almost any initial position. The technique explored should be applicable to a wide variety of nonlinear control problems.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI