亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

断层(地质) 人工神经网络 人工智能 计算机科学 深度学习 过程(计算) 信号(编程语言) 信号处理 机器学习 数据挖掘 模式识别(心理学) 数字信号处理 地震学 地质学 计算机硬件 程序设计语言 操作系统
作者
Feng Jia,Yaguo Lei,Jing Lin,Xin Zhou,Na Lü
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:72-73: 303-315 被引量:1556
标识
DOI:10.1016/j.ymssp.2015.10.025
摘要

Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raunio完成签到,获得积分10
3秒前
zmjmj发布了新的文献求助10
4秒前
烟花应助zmjmj采纳,获得10
12秒前
Hu完成签到,获得积分10
19秒前
21秒前
21秒前
坦率大米发布了新的文献求助20
26秒前
坦率大米完成签到,获得积分20
33秒前
zqq完成签到,获得积分0
34秒前
万能图书馆应助坦率大米采纳,获得20
38秒前
LRxxx完成签到 ,获得积分10
1分钟前
luck完成签到 ,获得积分10
1分钟前
terryok完成签到,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jyy发布了新的文献求助10
1分钟前
天真咖啡豆完成签到,获得积分10
1分钟前
CodeCraft应助chai采纳,获得10
1分钟前
1分钟前
1分钟前
左白易发布了新的文献求助10
2分钟前
wanci应助左白易采纳,获得10
2分钟前
左白易完成签到,获得积分10
2分钟前
旅行者完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zmjmj发布了新的文献求助10
2分钟前
2分钟前
qqhan发布了新的文献求助20
2分钟前
chai发布了新的文献求助10
2分钟前
3分钟前
jyy发布了新的文献求助10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
汉堡包应助搞怪幻悲采纳,获得10
3分钟前
3分钟前
搞怪幻悲发布了新的文献求助10
3分钟前
硕小牛完成签到,获得积分10
4分钟前
培培完成签到 ,获得积分10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4242380
求助须知:如何正确求助?哪些是违规求助? 3775866
关于积分的说明 11856231
捐赠科研通 3430701
什么是DOI,文献DOI怎么找? 1882769
邀请新用户注册赠送积分活动 934816
科研通“疑难数据库(出版商)”最低求助积分说明 841215