清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images

高光谱成像 选择(遗传算法) 多目标优化 计算机科学 模式识别(心理学) 预处理器 人工智能 熵(时间箭头) 集合(抽象数据类型) 进化算法 最优化问题 机器学习 算法 物理 量子力学 程序设计语言
作者
Maoguo Gong,Mingyang Zhang,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 544-557 被引量:153
标识
DOI:10.1109/tgrs.2015.2461653
摘要

Band selection is an important preprocessing step for hyperspectral image processing. Many valid criteria have been proposed for band selection, and these criteria model band selection as a single-objective optimization problem. In this paper, a novel multiobjective model is first built for band selection. In this model, two objective functions with a conflicting relationship are designed. One objective function is set as information entropy to represent the information contained in the selected band subsets, and the other one is set as the number of selected bands. Then, based on this model, a new unsupervised band selection method called multiobjective optimization band selection (MOBS) is proposed. In the MOBS method, these two objective functions are optimized simultaneously by a multiobjective evolutionary algorithm to find the best tradeoff solutions. The proposed method shows two unique characters. It can obtain a series of band subsets with different numbers of bands in a single run to offer more options for decision makers. Moreover, these band subsets with different numbers of bands can communicate with each other and have a coevolutionary relationship, which means that they can be optimized in a cooperative way. Since it is unsupervised, the proposed algorithm is compared with some related and recent unsupervised methods for hyperspectral image band selection to evaluate the quality of the obtained band subsets. Experimental results show that the proposed method can generate a set of band subsets with different numbers of bands in a single run and that these band subsets have a stable good performance on classification for different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鬼见愁给竹叶青的求助进行了留言
1秒前
5秒前
薛家泰完成签到 ,获得积分10
11秒前
居崽完成签到 ,获得积分10
38秒前
聪明的元枫完成签到,获得积分10
57秒前
vbnn完成签到 ,获得积分10
59秒前
1分钟前
Omni完成签到,获得积分10
2分钟前
研友_ngJlbL完成签到,获得积分10
2分钟前
2分钟前
夏沐沐完成签到,获得积分10
2分钟前
萍123完成签到 ,获得积分10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
muriel完成签到,获得积分10
2分钟前
2分钟前
房天川完成签到 ,获得积分0
3分钟前
研友_ngJlbL发布了新的文献求助10
3分钟前
3分钟前
海人完成签到 ,获得积分10
3分钟前
coolplex完成签到 ,获得积分10
3分钟前
4分钟前
深情安青应助hhn采纳,获得10
4分钟前
小蘑菇应助不做科研采纳,获得10
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
5分钟前
常有李发布了新的文献求助10
5分钟前
5分钟前
魔幻的妖丽完成签到 ,获得积分10
5分钟前
成就念芹完成签到,获得积分10
5分钟前
5分钟前
常有李发布了新的文献求助10
5分钟前
周周南完成签到 ,获得积分10
5分钟前
FashionBoy应助火星上向珊采纳,获得10
5分钟前
自信的坤应助Yafeiyy___采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136580
求助须知:如何正确求助?哪些是违规求助? 3673334
关于积分的说明 11611503
捐赠科研通 3368382
什么是DOI,文献DOI怎么找? 1850454
邀请新用户注册赠送积分活动 913835
科研通“疑难数据库(出版商)”最低求助积分说明 828941