Epigenome Editing: State of the Art, Concepts, and Perspectives

表观基因组 染色质 生物 重编程 计算生物学 表观遗传学 基因组编辑 表观遗传学 清脆的 遗传学 DNA甲基化 基因 基因表达
作者
Goran Kungulovski,Albert Jeltsch
出处
期刊:Trends in Genetics [Elsevier BV]
卷期号:32 (2): 101-113 被引量:183
标识
DOI:10.1016/j.tig.2015.12.001
摘要

Numerous studies have demonstrated that targeted deposition or removal of chromatin modifications (epigenome editing) is a powerful approach for functional studies of locus-specific chromatin modifications and their relation to gene expression and other processes. Epigenome editing holds great potential as a therapeutic approach in the clinic for durable regulation of disease-related genes and in cellular reprogramming. Before the full potential of epigenome editing can be realized, numerous questions related to the function, regulatory logic, and maintenance of chromatin modifications need to be answered. The question of specificity of the DNA recognition domain needs to be addressed in a case-by-case manner. The activity of the EpiEffector (catalytic domain of a chromatin-modifying enzyme) needs to be tuned to achieve optimal chromatin modulation. Epigenome editing refers to the directed alteration of chromatin marks at specific genomic loci by using targeted EpiEffectors which comprise designed DNA recognition domains (zinc finger, TAL effector, or modified CRISPR/Cas9 complex) and catalytic domains from a chromatin-modifying enzyme. Epigenome editing is a promising approach for durable gene regulation, with many applications in basic research including the investigation of the regulatory functions and logic of chromatin modifications and cellular reprogramming. From a clinical point of view, targeted regulation of disease-related genes offers novel therapeutic avenues for many diseases. We review here the progress made in this field and discuss open questions in epigenetic regulation and its stability, methods to increase the specificity of epigenome editing, and improved delivery methods for targeted EpiEffectors. Future work will reveal if the approach of epigenome editing fulfills its great promise in basic research and clinical applications. Epigenome editing refers to the directed alteration of chromatin marks at specific genomic loci by using targeted EpiEffectors which comprise designed DNA recognition domains (zinc finger, TAL effector, or modified CRISPR/Cas9 complex) and catalytic domains from a chromatin-modifying enzyme. Epigenome editing is a promising approach for durable gene regulation, with many applications in basic research including the investigation of the regulatory functions and logic of chromatin modifications and cellular reprogramming. From a clinical point of view, targeted regulation of disease-related genes offers novel therapeutic avenues for many diseases. We review here the progress made in this field and discuss open questions in epigenetic regulation and its stability, methods to increase the specificity of epigenome editing, and improved delivery methods for targeted EpiEffectors. Future work will reveal if the approach of epigenome editing fulfills its great promise in basic research and clinical applications. direct and targeted treatment of the major cause of a disease or phenotypic state. the process of converting one cell type into another by changing the gene expression program of the cell. the structural and functional interplay and coexistence of histone and DNA modifications within chromatin. nucleoprotein complex containing DNA, histones, non-histone proteins, and RNA. The basic structural unit of chromatin is the nucleosome, consisting of 147 bp of DNA wrapped around an octamer of histones H3, H4, H2A, and H2B. a prokaryotic immune system which protects bacterium against foreign DNA such as plasmids and phages. Mechanistically, in its simplest form, a nuclease (Cas9) binds to an appropriate small guide RNA molecule of the CRISPR class which targets the entire complex to its complementary target DNA sequence. oxidation of the 5-methylcytosine to 5-hydroxymethylcytosine and higher oxidation states. This process is the first step in DNA demethylation and the modified bases function as a chromatin modification. addition of a methyl group on the C5 position of cytosine residues in DNA, typically in a CpG context, by enzymes termed DNA methyltransferases. DNA adenine-N6 and DNA cytosine-N4 methylation is not discussed here. scientific field studying mitotically and/or meiotically heritable changes in gene function that do not rely on changes in DNA sequences. the sum of all chromatin modifications which may or may not be heritable (epigenetic). enzymatically introduced covalent modification of histone proteins, including lysine acetylation, lysine and arginine methylation, lysine ubiquitination, serine or threonine phosphorylation, among others. an epigenetic phenomenon where particular alleles are expressed in a parent-of-origin-dependent manner. a type of pluripotent stem cells that are generated by artificial cellular reprogramming of mature adult cells. a synthetic biology technique that uses light to control genetic circuits in living tissues. an interdisciplinary branch of biology concerned with the design of novel biological devices, biological systems, and biological machines. proteins secreted by Xanthomonas bacteria. They recognize target DNA sequences through a central repeat domain consisting of a variable number of ∼34 amino acid repeats showing a one-to-one correspondence between the identity of two hypervariable crucial amino acids (at the 12th and 13th positions) in each repeat and one DNA base in the target sequence. a protein domain with a finger-like protrusion that is characterized by coordination of zinc ion(s) to stabilize its fold. There is a colinearity between the protein sequence of the zinc finger and its target DNA sequence, with each finger mainly recognizing three base pairs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caigou发布了新的文献求助10
1秒前
4秒前
4秒前
大师兄完成签到,获得积分10
5秒前
5秒前
5秒前
JiegeSCI发布了新的文献求助10
6秒前
浮游应助tom采纳,获得10
6秒前
8秒前
Jiangx发布了新的文献求助10
10秒前
薄荷奶绿关注了科研通微信公众号
10秒前
11秒前
VanAllen发布了新的文献求助10
11秒前
安详秋完成签到 ,获得积分10
12秒前
123完成签到,获得积分10
13秒前
hhhhh完成签到 ,获得积分10
13秒前
肖李完成签到,获得积分10
13秒前
Lucas应助GONGLI采纳,获得10
13秒前
mmmooo发布了新的文献求助30
14秒前
ZLY发布了新的文献求助10
14秒前
skkr完成签到,获得积分10
15秒前
111完成签到 ,获得积分10
16秒前
hhhhh关注了科研通微信公众号
16秒前
17秒前
18秒前
王王王王完成签到,获得积分10
19秒前
橙汁完成签到,获得积分10
19秒前
阿巴阿巴阿巴完成签到,获得积分10
19秒前
动听幻儿发布了新的文献求助10
22秒前
23秒前
26秒前
28秒前
情怀应助yujiayou采纳,获得30
28秒前
297223发布了新的文献求助10
29秒前
薄荷奶绿发布了新的文献求助10
30秒前
aaa发布了新的文献求助10
31秒前
QQQ完成签到,获得积分10
31秒前
wonder123应助尊敬的寄松采纳,获得10
32秒前
JiegeSCI完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
ACI SPEC 351.4 : 2024 Cementitious Grout Installation between Foundations and Equipment Bases—Specification 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4821370
求助须知:如何正确求助?哪些是违规求助? 4129611
关于积分的说明 12779828
捐赠科研通 3869521
什么是DOI,文献DOI怎么找? 2129172
邀请新用户注册赠送积分活动 1149776
关于科研通互助平台的介绍 1046059