亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi critical quality attributes monitoring of Chinese oral liquid extraction process with a spectral sensor fusion strategy

化学 偏最小二乘回归 串联(数学) 传感器融合 计算机科学 融合 近红外光谱 过程(计算) 生物系统 模式识别(心理学) 数学 人工智能 色谱法 统计 物理 生物 量子力学 操作系统 组合数学 哲学 语言学
作者
Jin Zhang,Xiuhua Xu,Lian Li,Haoyuan Li,Lele Gao,Xiaomei Yuan,Haochen Du,Yongxia Guan,Hengchang Zang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:278: 121317-121317 被引量:22
标识
DOI:10.1016/j.saa.2022.121317
摘要

The traditional Chinese medicine (TCM) extraction process is a complicated dynamic system with many variables and disturbance. Therefore, multi critical quality attributes (CQAs) monitoring is of great significance to understand the whole process. Spectroscopy is a powerful process analytical tool used for process understanding. However, single senor sometimes could not provide comprehensive information. Sensor fusion is a very practical method to overcome this deficiency. In this study, the extraction process of Xiao'er Xiaoji Zhike Oral Liquid (XXZOL) was carried out in pilot scale, where near infrared (NIR) spectroscopy and mid infrared (MIR) spectroscopy were collected to determine the concentrations of seven CQAs (synephrine, arecoline, chlorogenic acid, forsythoside A, naringin, hesperidin and neohesperidin) during extraction process. Based on fused data blocks, fusion partial least squares (PLS) models were established. Two fusion data blocks are obtained from the concatenation of original spectra (low-level data fusion) and the concatenation of characteristic variables based on band selection (mid-level data fusion) respectively. The results indicated that for all seven analytes, the mid-level data fusion models were superior to the single spectral models, with the prediction performance significantly improved. Specifically, the coefficients of determination (Rp2 and Rt2) of NIR, MIR and fusion quantitative models were all higher than 0.95. The relative standard errors of prediction (RSEP) values were all within 10%, except for models of neohesperidin, which were 10.76%, 12.39%, 12.05%, 10.03% for NIR, MIR, low-level and mid-level models respectively. These results demonstrate that it is feasible to monitor the extraction process of Xiao'er Xiaoji Zhike Oral Liquid more accurately and rapidly by fusing NIR and MIR spectroscopy, and the proposed approach also has vital and valuable reference value for the rapid monitoring of the mixed decoction process of other TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kristopher完成签到 ,获得积分10
1秒前
欧皇发布了新的文献求助10
4秒前
小启完成签到,获得积分10
5秒前
浮游应助siri1313采纳,获得10
6秒前
高唐发布了新的文献求助10
7秒前
Master完成签到 ,获得积分10
9秒前
AIDIN完成签到 ,获得积分10
10秒前
欧皇发布了新的文献求助10
11秒前
珍珠完成签到 ,获得积分10
12秒前
WANG完成签到 ,获得积分10
16秒前
医研完成签到 ,获得积分10
16秒前
oleskarabach发布了新的文献求助10
18秒前
19秒前
迷人芫发布了新的文献求助10
20秒前
小圆圈完成签到,获得积分10
21秒前
21秒前
研友_8WzxMZ发布了新的文献求助10
26秒前
yz123发布了新的文献求助20
27秒前
hwen1998完成签到 ,获得积分10
30秒前
杨无敌完成签到 ,获得积分10
30秒前
31秒前
英姑应助helpmepaper采纳,获得10
33秒前
在水一方应助whr采纳,获得10
37秒前
40秒前
Zert发布了新的文献求助10
45秒前
丰富之槐完成签到,获得积分10
46秒前
袁钰琳完成签到 ,获得积分10
46秒前
坤桑完成签到 ,获得积分10
49秒前
50秒前
ding应助wenqi采纳,获得10
52秒前
helpmepaper发布了新的文献求助10
53秒前
苹果树下的懒洋洋完成签到 ,获得积分10
55秒前
忧郁小鸽子完成签到,获得积分10
55秒前
小二郎应助高唐采纳,获得10
1分钟前
XueXiTong完成签到,获得积分10
1分钟前
yz123完成签到,获得积分10
1分钟前
无尘完成签到 ,获得积分10
1分钟前
小豹子完成签到,获得积分10
1分钟前
1分钟前
dawn发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519