Korteweg–de Vries方程
齐次空间
无穷小
不变(物理)
李群
伴随表象
对称(几何)
谎言理论
换向器
对称群
孤子
数学
数学物理
偏微分方程
物理
数学分析
李代数的伴随表示
纯数学
量子力学
非线性系统
李共形代数
几何学
作者
Ashish Tiwari,Rajan Arora
标识
DOI:10.1142/s0217984922500567
摘要
This work attempts to apply the Lie symmetry approach to an updated (2+1)-dimensional KdV equation, recently updated in A.-M. Wazwaz, Nucl. Phys. B 954 (2020) 115009. The equation can be considered as one of the famous examples of the soliton equation. The infinitesimal generators for the governing equation have been found using the invariance property of Lie groups. The commutator table, adjoint table, invariant functions and one-dimensional optimal system of subalgebras are then derived using Lie point symmetries. Some group invariant solutions are derived based on various subalgebras, symmetry reductions and an optimal system. To demonstrate the physical acceptability of the results, the obtained solutions are evaluated using numerical simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI