Ultrafine MoS2/Sb2S3 Nanorod Type‐II Heterojunction for Hydrogen Production under Simulated Sunlight

材料科学 纳米棒 光催化 异质结 制氢 半导体 热液循环 催化作用 纳米技术 化学工程 载流子 分解水 辐照 可见光谱 光电子学 化学 物理 工程类 生物化学 核物理学
作者
Wei Li,Tenghao Ma,Yanyan Dang,Xiao‐Yun Liu,Jia‐Yuan Li,Chuanyi Wang
出处
期刊:Advanced Materials Interfaces [Wiley]
卷期号:9 (15) 被引量:9
标识
DOI:10.1002/admi.202200119
摘要

Abstract Transition metal sulfides (TMSs) have been widely used as photocatalytic materials in view of the merits of broadband light harvesting and low work function. However, the photocorrosion generally leads to the unstable photoactivity. Antimony sulfide (Sb 2 S 3 ) is a TMS semiconductor with prominent structural stability due to its large‐size microstructure. However, the slow body‐to‐surface carriers’ migration dramatically hinders its application in photocatalysis field. Herein, to gain a stable TMS‐based photocatalyst with high photoactivity for hydrogen production, the ultrafine MoS 2 served as cocatalyst is grown in situ on the surface of Sb 2 S 3 nanorods to form a type‐II heterostructured catalyst via a green hydrothermal procedure. In view of the narrow bandgap feature of both materials, the as‐prepared heterostructured catalyst possesses prominent broadband‐light harvesting. Owing to the synergistic promotion of built‐in electric field, the photocarriers’ migration in depletion region is significantly speeded up so that their recombination is effectively hindered, thereby this novel catalyst possesses 34.9‐fold and 11.7‐fold higher hydrogen evolution reaction photoactivity than that of bare Sb 2 S 3 and MoS 2 under simulated sunlight irradiation. On account of the formation of Mo (MoS 2 )‐S (Sb 2 S 3 ) and Sb (Sb 2 S 3 )‐S (MoS 2 ) coordination interactions in heterointerface, highly enhanced photostability is presented even being handled during long‐term irradiation. This study provides an insight for gaining a stable TMS‐based photocatalyst with high‐performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
旺旺仙貝完成签到 ,获得积分10
4秒前
4秒前
Dream发布了新的文献求助10
5秒前
zty发布了新的文献求助10
5秒前
chen完成签到 ,获得积分10
6秒前
英俊的铭应助薛定谔的猫采纳,获得10
6秒前
科目三应助坦率的寻双采纳,获得10
6秒前
月棺轻城完成签到,获得积分10
7秒前
Luis发布了新的文献求助10
9秒前
zty完成签到,获得积分10
12秒前
慕青应助浮华采纳,获得10
12秒前
科研小李发布了新的文献求助10
12秒前
13秒前
无辜茉莉完成签到,获得积分10
13秒前
Dream完成签到,获得积分10
14秒前
14秒前
15秒前
暴躁的白容完成签到,获得积分10
15秒前
酷波er应助冷傲的迎荷采纳,获得60
15秒前
736550205完成签到,获得积分10
16秒前
17秒前
皮皮完成签到,获得积分10
17秒前
吴hy发布了新的文献求助10
17秒前
Lea发布了新的文献求助10
17秒前
Akim应助小柿子采纳,获得10
17秒前
FashionBoy应助深蓝采纳,获得10
18秒前
18秒前
GG完成签到 ,获得积分10
19秒前
20秒前
qqqqqqqqq完成签到 ,获得积分10
21秒前
DW发布了新的文献求助10
22秒前
steraphia完成签到,获得积分10
22秒前
LULU完成签到,获得积分10
23秒前
行光关注了科研通微信公众号
24秒前
24秒前
24秒前
zz完成签到,获得积分10
25秒前
ShellyHan发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329252
关于积分的说明 10241071
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268