清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Disentangled Graph Neural Networks for Session-Based Recommendation

会话(web分析) 计算机科学 嵌入 因子(编程语言) 推荐系统 粒度 图形 人工智能 人工神经网络 相似性(几何) 机器学习 理论计算机科学 情报检索 数据挖掘 万维网 图像(数学) 程序设计语言 操作系统
作者
Ansong Li,Zhiyong Cheng,Fan Liu,Zan Gao,Weili Guan,Yuxin Peng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-13 被引量:39
标识
DOI:10.1109/tkde.2022.3208782
摘要

Session-based recommendation (SBR) has drawn increasingly research attention in recent years, due to its great practical value by only exploiting the limited user behavior history in the current session. The key of SBR is to accurately infer the anonymous user purpose in a session which is typically represented as session embedding, and then match it with the item embeddings for the next item prediction. Existing methods typically learn the session embedding at the item level, namely, aggregating the embeddings of items with or without assigned attention weights to items. However, they ignore the fact that a user's intent on adopting an item is driven by certain factors of the item (e.g., the leading actors of an movie). In other words, they have not explored finer-granularity interests of users at the factor level to generate the session embedding, leading to sub-optimal performance. To address the problem, we propose a novel method called Disentangled Graph Neural Network (Disen-GNN) to capture the session purpose with the consideration of factor-level attention on each item. Specifically, we first employ the disentangled learning technique to cast item embeddings into the embeddings of multiple factors, and then use the gated graph neural network (GGNN) to learn the embedding factor-wisely based on the item adjacent similarity matrix computed for each factor. Moreover, the distance correlation is adopted to enhance the independence between each pair of factors. After representing each item with independent factors, an attention mechanism is designed to learn user intent to different factors of each item in the session. The session embedding is then generated by aggregating the item embeddings with attention weights of each item's factors. To this end, our model takes user intents at the factor level into account to infer the user purpose in a session. Extensive experiments on three benchmark datasets demonstrate the superiority of our method over existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生如夏花完成签到 ,获得积分10
43秒前
44秒前
传奇3应助科研通管家采纳,获得10
58秒前
茉莉雨完成签到 ,获得积分10
1分钟前
1分钟前
鹿茸与共发布了新的文献求助10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
xinjiasuki完成签到 ,获得积分10
2分钟前
CipherSage应助范范采纳,获得10
2分钟前
2分钟前
范范发布了新的文献求助10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
希望天下0贩的0应助范范采纳,获得10
2分钟前
Sunny完成签到,获得积分10
3分钟前
sailingluwl完成签到,获得积分10
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
寻桃阿玉完成签到 ,获得积分10
3分钟前
Much完成签到 ,获得积分10
5分钟前
恶恶么v完成签到,获得积分10
6分钟前
6分钟前
666发布了新的文献求助10
6分钟前
6分钟前
英姑应助调皮醉波采纳,获得10
6分钟前
ma发布了新的文献求助10
6分钟前
科研通AI5应助大头采纳,获得10
7分钟前
8分钟前
8分钟前
范范发布了新的文献求助10
8分钟前
大头发布了新的文献求助10
8分钟前
8分钟前
调皮醉波发布了新的文献求助10
8分钟前
sowhat完成签到 ,获得积分10
8分钟前
田様应助666采纳,获得10
9分钟前
调皮醉波完成签到,获得积分10
9分钟前
inRe完成签到,获得积分10
10分钟前
xwl9955完成签到 ,获得积分10
10分钟前
Joseph_sss完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827299
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456593
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251