Improving feature extraction from histopathological images through a fine-tuning ImageNet model

计算机科学 人工智能 特征(语言学) 特征提取 模式识别(心理学) 学习迁移 人工神经网络 语言学 哲学
作者
Xingyu Li,Min Cen,Jinfeng Xu,Hong Zhang,Xu Steven Xu
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:13: 100115-100115 被引量:11
标识
DOI:10.1016/j.jpi.2022.100115
摘要

Due to lack of annotated pathological images, transfer learning has been the predominant approach in the field of digital pathology. Pre-trained neural networks based on ImageNet database are often used to extract “off-the-shelf” features, achieving great success in predicting tissue types, molecular features, and clinical outcomes, etc. We hypothesize that fine-tuning the pre-trained models using histopathological images could further improve feature extraction, and downstream prediction performance. We used 100 000 annotated H&E image patches for colorectal cancer (CRC) to fine-tune a pre-trained Xception model via a 2-step approach. The features extracted from fine-tuned Xception (FTX-2048) model and Image-pretrained (IMGNET-2048) model were compared through: (1) tissue classification for H&E images from CRC, same image type that was used for fine-tuning; (2) prediction of immune-related gene expression, and (3) gene mutations for lung adenocarcinoma (LUAD). Five-fold cross validation was used for model performance evaluation. Each experiment was repeated 50 times. The extracted features from the fine-tuned FTX-2048 exhibited significantly higher accuracy (98.4%) for predicting tissue types of CRC compared to the “off-the-shelf” features directly from Xception based on ImageNet database (96.4%) (P value = 2.2 × 10−6). Particularly, FTX-2048 markedly improved the accuracy for stroma from 87% to 94%. Similarly, features from FTX-2048 boosted the prediction of transcriptomic expression of immune-related genes in LUAD. For the genes that had significant relationships with image features (P < 0.05, n = 171), the features from the fine-tuned model improved the prediction for the majority of the genes (139; 81%). In addition, features from FTX-2048 improved prediction of mutation for 5 out of 9 most frequently mutated genes (STK11, TP53, LRP1B, NF1, and FAT1) in LUAD. We proved the concept that fine-tuning the pretrained ImageNet neural networks with histopathology images can produce higher quality features and better prediction performance for not only the same-cancer tissue classification where similar images from the same cancer are used for fine-tuning, but also cross-cancer prediction for gene expression and mutation at patient level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小伙不错完成签到 ,获得积分10
刚刚
刚刚
2秒前
搜集达人应助rachel03采纳,获得10
3秒前
DT发布了新的文献求助10
5秒前
lynlnl发布了新的文献求助10
5秒前
温婉的凡阳完成签到 ,获得积分10
6秒前
冷静的十八完成签到,获得积分10
8秒前
wlmqljj发布了新的文献求助10
8秒前
Singularity应助鞠俊哲采纳,获得10
11秒前
gttlyb完成签到,获得积分10
11秒前
wanci应助Rainlistener采纳,获得10
12秒前
13秒前
沉梦昂志_hzy完成签到,获得积分0
14秒前
洪亮完成签到,获得积分0
15秒前
17秒前
321完成签到,获得积分10
19秒前
20秒前
李健的小迷弟应助lucky采纳,获得10
20秒前
21秒前
何hyy完成签到 ,获得积分10
22秒前
Yang完成签到,获得积分10
22秒前
沉泽完成签到 ,获得积分10
23秒前
23秒前
充电宝应助果果采纳,获得10
25秒前
ZHEN发布了新的文献求助10
25秒前
zhx发布了新的文献求助10
26秒前
26秒前
冰魂应助天想月采纳,获得10
27秒前
冰魂应助陈思思采纳,获得20
27秒前
春秋完成签到,获得积分10
28秒前
30秒前
余笑完成签到,获得积分10
31秒前
风中的安珊完成签到,获得积分10
33秒前
happy发布了新的文献求助10
33秒前
34秒前
下午好完成签到 ,获得积分10
34秒前
36秒前
36秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801382
求助须知:如何正确求助?哪些是违规求助? 3347052
关于积分的说明 10331668
捐赠科研通 3063333
什么是DOI,文献DOI怎么找? 1681539
邀请新用户注册赠送积分活动 807616
科研通“疑难数据库(出版商)”最低求助积分说明 763810