清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A self-matching model for online anomaly recognition of safety monitoring data in dams

异常检测 离群值 计算机科学 数据挖掘 可靠性(半导体) 匹配(统计) 模式识别(心理学) 数据类型 支持向量机 异常(物理) 人工智能 统计 数学 功率(物理) 物理 量子力学 程序设计语言 凝聚态物理
作者
Fang Zhang,Xiang Lü,Yanling Li,Zhiliang Gao,Han Zhang,Huibao Huang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (1): 746-773 被引量:10
标识
DOI:10.1177/14759217221074603
摘要

The online anomaly recognition of real-time dam safety monitoring data, such as deformation and seepage data from the automatic sensing instruments (e.g., the osmometer and the multi-point displacement meter), has the premise of ensuring data reliability, and it is also one of the core functional modules of online dam safety monitoring. To compensate for the limitation of a single method to identify outliers and further improve the reliability and the rapidity of the anomaly recognition of dam safety monitoring data, a self-matching model based on data-types for online anomaly recognition (SMM) was proposed in this paper. Based on a detailed classification of dam safety monitoring data sequences, this article describes a comparison and analysis of the applicability of a statistical regression model based on the least-squares regression (LSR) model and the online robust recognition and early warning (RREW) model for different datatype sequences. For the single-step-type sequences and normal-type sequences with low fitting accuracy, which could not be completely identified by the two models above, an improved cloud model recognition method based on the diurnal variation rate (ICM) was proposed to compensate for the limitations. Finally, the SMM was determined, that is, the LSR model was used for the multi-point-outlier-type and normal-type sequences with high fitting accuracy, the RREW model method was used for the double-step-type and oscillatory-type sequences, and the ICM method was used for the single-step-type sequences and normal-type sequences with low fitting accuracy. The engineering application of the Dadu River Basin showed that this method effectively solved the problems of low calculation efficiency and a 2% misjudgment rate when using the RREW model alone, and this method greatly improved the accuracy and timeliness of the anomaly recognition of dam safety monitoring data, so it had important theoretical significance and engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机灵的嚓茶完成签到,获得积分10
2秒前
和谐的夏岚完成签到 ,获得积分10
5秒前
黄玉发布了新的文献求助10
7秒前
LeoBigman完成签到 ,获得积分10
12秒前
as完成签到 ,获得积分10
14秒前
彭于晏应助HHM采纳,获得10
20秒前
小西完成签到 ,获得积分10
41秒前
Boris完成签到 ,获得积分10
44秒前
科研通AI5应助黄玉采纳,获得10
46秒前
赵李锋完成签到,获得积分10
50秒前
杨乃彬完成签到,获得积分10
52秒前
55秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
1分钟前
qrt发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
GPTea举报大脆鸡扒麦满分求助涉嫌违规
2分钟前
小小完成签到 ,获得积分10
2分钟前
qrt完成签到,获得积分20
2分钟前
轻松的水壶完成签到 ,获得积分10
2分钟前
桐桐应助qrt采纳,获得10
2分钟前
SCINEXUS完成签到,获得积分0
2分钟前
香蕉觅云应助ping采纳,获得10
3分钟前
3分钟前
HHM发布了新的文献求助10
3分钟前
芒芒发paper完成签到 ,获得积分10
3分钟前
X519664508完成签到,获得积分10
4分钟前
Singularity完成签到,获得积分0
4分钟前
小山己几完成签到,获得积分10
4分钟前
冷cool完成签到 ,获得积分10
4分钟前
4分钟前
恒牙完成签到 ,获得积分10
4分钟前
ping发布了新的文献求助10
4分钟前
5分钟前
流星雨完成签到 ,获得积分10
5分钟前
arsenal发布了新的文献求助10
5分钟前
王一生完成签到,获得积分10
5分钟前
时老完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Impaired Driving as a Public Health Concern and Healthcare Technology Approaches 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5020590
求助须知:如何正确求助?哪些是违规求助? 4258957
关于积分的说明 13271902
捐赠科研通 4064420
什么是DOI,文献DOI怎么找? 2223114
邀请新用户注册赠送积分活动 1232143
关于科研通互助平台的介绍 1155677