Robust deep learning-based seismic inversion workflow using temporal convolutional networks

反演(地质) 工作流程 计算机科学 深度学习 卷积神经网络 合成数据 人工神经网络 地震反演 地球物理学 小波 数据挖掘 人工智能 地质学 地震学 数据同化 物理 数据库 气象学 构造学
作者
Robert Smith,Philippe Nivlet,Hussain Alfayez,Nasher M. AlBinHassan
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:10 (2): SC41-SC55 被引量:10
标识
DOI:10.1190/int-2021-0142.1
摘要

Seismic inversion is the process of converting seismic reflectivity data into physical subsurface properties. The most common inversion methods use physics-based forward modeling, but these require time-consuming steps, such as initial model building and wavelet extraction. Coherent noise in the seismic volume also may lead to suboptimal results. Advances in deep learning enable the development of new geophysical workflows that may help overcome these challenges. One example is the temporal convolutional network (TCN), a deep neural network that learns from sequential data, such as seismic traces. Previous research using the TCN architecture has indicated promising inversion results on synthetic data. However, applying the method to field data has several additional challenges that need to be considered, including complex noise and limited well availability. We used a poststack field data set containing coherent noise to evaluate the TCN approach for acoustic impedance inversion under these conditions. Despite the small data set, a TCN trained using traces and logs acquired at well locations produced better results than conventional inversion when supplemented with an additional time feature. While the physics-based inversion created false artifacts related to the noise, the neural network approach learned to ignore the suspected multiple events. Supervised learning using well data also makes semi-automated inversion a possibility. However, obtaining acceptable results using the few locations with logged boreholes may only be possible in relatively simple geological scenarios. To overcome the issue of small data sets, we developed a workflow for generating realistic synthetic data to provide more samples and variation for model training. A TCN trained using synthetic data ultimately produced the best impedance estimates, but care is needed to ensure the synthetic traces contain realistic noise. Overall, we show that a TCN can successfully invert seismic data contaminated with coherent noise, producing superior results compared to model-based inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小黄发布了新的文献求助10
2秒前
所所应助孤岛采纳,获得10
3秒前
4秒前
稳重发布了新的文献求助10
5秒前
ypp完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
如风随水发布了新的文献求助10
7秒前
科研通AI5应助Yan0909采纳,获得10
8秒前
卡卡西发布了新的文献求助20
10秒前
11秒前
cappuccino发布了新的文献求助10
11秒前
Orange应助爱听歌的菲鹰采纳,获得10
11秒前
Daisy发布了新的文献求助10
12秒前
12秒前
玊尔发布了新的文献求助10
14秒前
15秒前
sunshine发布了新的文献求助30
16秒前
18秒前
18秒前
爆米花应助Kvolu29采纳,获得10
19秒前
紫筱枫影发布了新的文献求助10
20秒前
ding应助yeniil采纳,获得10
21秒前
22秒前
yabocai发布了新的文献求助10
22秒前
29秒前
大个应助yabocai采纳,获得10
32秒前
痴情的博超完成签到,获得积分10
33秒前
稳重发布了新的文献求助10
34秒前
紫筱枫影完成签到,获得积分10
34秒前
36秒前
36秒前
39秒前
yeniil发布了新的文献求助10
40秒前
22222完成签到 ,获得积分10
41秒前
Kkens发布了新的文献求助10
41秒前
沫晨关注了科研通微信公众号
44秒前
紫烨发布了新的文献求助10
45秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806908
求助须知:如何正确求助?哪些是违规求助? 3351685
关于积分的说明 10355312
捐赠科研通 3067522
什么是DOI,文献DOI怎么找? 1684587
邀请新用户注册赠送积分活动 809860
科研通“疑难数据库(出版商)”最低求助积分说明 765683