Robust deep learning-based seismic inversion workflow using temporal convolutional networks

反演(地质) 工作流程 计算机科学 深度学习 卷积神经网络 合成数据 人工神经网络 地震反演 地球物理学 小波 数据挖掘 人工智能 地质学 地震学 数据同化 物理 数据库 气象学 构造学
作者
Robert Smith,Philippe Nivlet,Hussain Alfayez,Nasher M. AlBinHassan
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:10 (2): SC41-SC55 被引量:21
标识
DOI:10.1190/int-2021-0142.1
摘要

Abstract Seismic inversion is the process of converting seismic reflectivity data into physical subsurface properties. The most common inversion methods use physics-based forward modeling, but these require time-consuming steps, such as initial model building and wavelet extraction. Coherent noise in the seismic volume also may lead to suboptimal results. Advances in deep learning enable the development of new geophysical workflows that may help overcome these challenges. One example is the temporal convolutional network (TCN), a deep neural network that learns from sequential data, such as seismic traces. Previous research using the TCN architecture has indicated promising inversion results on synthetic data. However, applying the method to field data has several additional challenges that need to be considered, including complex noise and limited well availability. We used a poststack field data set containing coherent noise to evaluate the TCN approach for acoustic impedance inversion under these conditions. Despite the small data set, a TCN trained using traces and logs acquired at well locations produced better results than conventional inversion when supplemented with an additional time feature. While the physics-based inversion created false artifacts related to the noise, the neural network approach learned to ignore the suspected multiple events. Supervised learning using well data also makes semi-automated inversion a possibility. However, obtaining acceptable results using the few locations with logged boreholes may only be possible in relatively simple geological scenarios. To overcome the issue of small data sets, we developed a workflow for generating realistic synthetic data to provide more samples and variation for model training. A TCN trained using synthetic data ultimately produced the best impedance estimates, but care is needed to ensure the synthetic traces contain realistic noise. Overall, we show that a TCN can successfully invert seismic data contaminated with coherent noise, producing superior results compared to model-based inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大方荷花发布了新的文献求助10
1秒前
aaaaaa发布了新的文献求助50
1秒前
量子星尘发布了新的文献求助10
2秒前
完美世界应助王蕊采纳,获得10
2秒前
3秒前
Pessimist完成签到 ,获得积分10
3秒前
hao123发布了新的文献求助10
3秒前
4秒前
烟花应助从容的路灯采纳,获得10
4秒前
接受饼干发布了新的文献求助10
4秒前
余空发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
吉良吉影发布了新的文献求助10
8秒前
华仔应助南晴采纳,获得10
8秒前
临济知阳发布了新的文献求助10
8秒前
8秒前
洛玄川发布了新的文献求助10
8秒前
Orange应助mashirodesuki采纳,获得10
9秒前
直率的冰海完成签到,获得积分10
10秒前
10秒前
CodeCraft应助眯眯眼的山柳采纳,获得10
11秒前
11秒前
11秒前
lu完成签到,获得积分10
11秒前
传奇3应助ZetaGundam采纳,获得10
12秒前
CipherSage应助喜悦冰烟采纳,获得10
13秒前
14秒前
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇应助11采纳,获得10
16秒前
Sherry完成签到,获得积分10
16秒前
xiaoyan发布了新的文献求助10
17秒前
光敏剂发布了新的社区帖子
17秒前
18秒前
18秒前
杨洋发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728463
求助须知:如何正确求助?哪些是违规求助? 5312850
关于积分的说明 15314159
捐赠科研通 4875631
什么是DOI,文献DOI怎么找? 2618899
邀请新用户注册赠送积分活动 1568458
关于科研通互助平台的介绍 1525134