OUP accepted manuscript

计算机科学 接收机工作特性 生物标志物 胶质瘤 脑瘤 边距(机器学习) 人工智能 磁共振成像 机器学习 化学 医学 放射科 癌症研究 病理 生物化学
作者
Doruk Cakmakci,Gun Kaynar,Caroline Bund,Martial Piotto,Francois Proust,Izzie Jacques Namer,A Ercument Cicek
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (12): 3238-3244 被引量:1
标识
DOI:10.1093/bioinformatics/btac309
摘要

Identification and removal of micro-scale residual tumor tissue during brain tumor surgery are key for survival in glioma patients. For this goal, High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy-based assessment of tumor margins during surgery has been an effective method. However, the time required for metabolite quantification and the need for human experts such as a pathologist to be present during surgery are major bottlenecks of this technique. While machine learning techniques that analyze the NMR spectrum in an untargeted manner (i.e. using the full raw signal) have been shown to effectively automate this feedback mechanism, high dimensional and noisy structure of the NMR signal limits the attained performance.In this study, we show that identifying informative regions in the HRMAS NMR spectrum and using them for tumor margin assessment improves the prediction power. We use the spectra normalized with the ERETIC (electronic reference to access in vivo concentrations) method which uses an external reference signal to calibrate the HRMAS NMR spectrum. We train models to predict quantities of metabolites from annotated regions of this spectrum. Using these predictions for tumor margin assessment provides performance improvements up to 4.6% the Area Under the ROC Curve (AUC-ROC) and 2.8% the Area Under the Precision-Recall Curve (AUC-PR). We validate the importance of various tumor biomarkers and identify a novel region between 7.97 ppm and 8.09 ppm as a new candidate for a glioma biomarker.The code is released at https://github.com/ciceklab/targeted_brain_tumor_margin_assessment. The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.5781769.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九九发布了新的文献求助10
刚刚
JamesPei应助汽水采纳,获得10
1秒前
cai'e完成签到,获得积分10
3秒前
情怀应助lieditongxu采纳,获得20
4秒前
4秒前
科研通AI5应助woody采纳,获得10
5秒前
7秒前
8秒前
pantio完成签到,获得积分10
8秒前
尚永婧发布了新的文献求助10
9秒前
活泼的嚓茶完成签到,获得积分20
9秒前
drleslie完成签到 ,获得积分10
9秒前
10秒前
10秒前
skw发布了新的文献求助10
10秒前
平淡书包关注了科研通微信公众号
10秒前
小懒猪完成签到,获得积分10
11秒前
11秒前
12秒前
自由的代丝完成签到 ,获得积分10
12秒前
14秒前
汽水发布了新的文献求助10
14秒前
liam发布了新的文献求助10
14秒前
受伤纲发布了新的文献求助10
14秒前
15秒前
lieditongxu发布了新的文献求助20
15秒前
扶余山本发布了新的文献求助10
16秒前
巨炮叔叔完成签到,获得积分10
16秒前
爆米花应助An2ni0采纳,获得10
16秒前
碳酸芙兰发布了新的文献求助10
17秒前
ljh完成签到 ,获得积分10
18秒前
19秒前
猫仔完成签到,获得积分10
20秒前
有魅力山雁完成签到,获得积分20
20秒前
民科王聪完成签到,获得积分10
20秒前
科研通AI5应助YangSihan采纳,获得10
22秒前
彭于晏应助Eternity采纳,获得10
22秒前
英姑应助科研通管家采纳,获得20
23秒前
酷波er应助科研通管家采纳,获得30
23秒前
传奇3应助科研通管家采纳,获得10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110