An Efficient Bi-Objective Optimization Workflow Using the Distributed Quasi-Newton Method and Its Application to Well-Location Optimization

数学优化 计算机科学 多目标优化 加权 集合(抽象数据类型) 拟牛顿法 稳健性(进化) 最优化问题 工作流程 数学 牛顿法 非线性系统 医学 生物化学 物理 化学 量子力学 数据库 基因 放射科 程序设计语言
作者
Yixuan Wang,Faruk O. Alpak,Guohua Gao,Chaohui Chen,Jeroen C. Vink,Terence Wells,Fredrik Saaf
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (01): 364-380 被引量:13
标识
DOI:10.2118/203971-pa
摘要

Summary Although it is possible to apply traditional optimization algorithms to determine the Pareto front of a multiobjective optimization problem, the computational cost is extremely high when the objective function evaluation requires solving a complex reservoir simulation problem and optimization cannot benefit from adjoint-based gradients. This paper proposes a novel workflow to solve bi-objective optimization problems using the distributed quasi-Newton (DQN) method, which is a well-parallelized and derivative-free optimization (DFO) method. Numerical tests confirm that the DQN method performs efficiently and robustly. The efficiency of the DQN optimizer stems from a distributed computing mechanism that effectively shares the available information discovered in prior iterations. Rather than performing multiple quasi-Newton optimization tasks in isolation, simulation results are shared among distinct DQN optimization tasks or threads. In this paper, the DQN method is applied to the optimization of a weighted average of two objectives, using different weighting factors for different optimization threads. In each iteration, the DQN optimizer generates an ensemble of search points (or simulation cases) in parallel, and a set of nondominated points is updated accordingly. Different DQN optimization threads, which use the same set of simulation results but different weighting factors in their objective functions, converge to different optima of the weighted average objective function. The nondominated points found in the last iteration form a set of Pareto-optimal solutions. Robustness as well as efficiency of the DQN optimizer originates from reliance on a large, shared set of intermediate search points. On the one hand, this set of searching points is (much) smaller than the combined sets needed if all optimizations with different weighting factors would be executed separately; on the other hand, the size of this set produces a high fault tolerance, which means even if some simulations fail at a given iteration, the DQN method’s distributed-parallel information-sharing protocol is designed and implemented such that the optimization process can still proceed to the next iteration. The proposed DQN optimization method is first validated on synthetic examples with analytical objective functions. Then, it is tested on well-location optimization (WLO) problems by maximizing the oil production and minimizing the water production. Furthermore, the proposed method is benchmarked against a bi-objective implementation of the mesh adaptive direct search (MADS) method, and the numerical results reinforce the auspicious computational attributes of DQN observed for the test problems. To the best of our knowledge, this is the first time that a well-parallelized and derivative-free DQN optimization method has been developed and tested on bi-objective optimization problems. The methodology proposed can help improve efficiency and robustness in solving complicated bi-objective optimization problems by taking advantage of model-based search algorithms with an effective information-sharing mechanism. NOTE: This paper is also published as part of the 2021 SPE Reservoir Simulation Conference Special Issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rush完成签到,获得积分10
刚刚
2秒前
文艺鹰完成签到,获得积分10
2秒前
4秒前
orixero应助张张采纳,获得10
5秒前
Z赵完成签到 ,获得积分10
5秒前
顾矜应助阳光的蜜蜂啊采纳,获得10
7秒前
学勾巴发布了新的文献求助10
7秒前
12完成签到,获得积分20
8秒前
xx发布了新的文献求助10
10秒前
lxcy0612发布了新的文献求助10
11秒前
旅行者完成签到 ,获得积分10
13秒前
智海瑞完成签到,获得积分10
14秒前
搞怪的香菇完成签到,获得积分10
14秒前
Layover完成签到 ,获得积分10
16秒前
小刘完成签到,获得积分10
17秒前
小蘑菇应助终生科研徒刑采纳,获得10
17秒前
耐斯糖完成签到 ,获得积分10
19秒前
爆米花应助雪满头采纳,获得10
20秒前
Ran完成签到 ,获得积分10
20秒前
阿湛完成签到,获得积分10
21秒前
子春完成签到 ,获得积分10
23秒前
tom关注了科研通微信公众号
23秒前
team完成签到,获得积分10
25秒前
07关注了科研通微信公众号
25秒前
隐形曼青应助学勾巴采纳,获得10
26秒前
科研通AI5应助胡萝卜叶子采纳,获得10
27秒前
Akim应助xx采纳,获得10
29秒前
LDDDGR发布了新的文献求助10
34秒前
Orange应助cookie486采纳,获得10
36秒前
zks完成签到,获得积分10
37秒前
搜集达人应助圈儿多尼采纳,获得10
39秒前
xx完成签到,获得积分20
40秒前
41秒前
聪明白羊完成签到,获得积分10
41秒前
藏识发布了新的文献求助200
41秒前
万泉部诗人完成签到,获得积分10
43秒前
000发布了新的文献求助10
45秒前
07完成签到,获得积分10
45秒前
李琛璐完成签到 ,获得积分10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843