Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey

数据收集 计算机科学 可靠性(半导体) 网络数据包 水下 无线传感器网络 软件部署 实时计算 无线 计算机网络 钥匙(锁) 电信 计算机安全 功率(物理) 统计 物理 海洋学 数学 量子力学 地质学 操作系统
作者
Xiaohui Wei,Hao Guo,Xingwang Wang,Xiaonan Wang,Meikang Qiu
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 404-431 被引量:48
标识
DOI:10.1109/comst.2021.3134955
摘要

Reliable data collection techniques, whose aim is to ensure that sensed data are received successfully by a sink, are essential for applications in Underwater Wireless Sensor Networks (UWSNs). However, traditional data collection with Radio Frequency (RF) functions poorly in UWSNs due to peculiar features of underwater. Moreover, acoustic communication creates challenges for the reliability of data collection such as high bit error rate, packet collision and voids in routing. Furthermore, the deployment of Autonomous Underwater Vehicles (AUVs) in some scenarios changed the paradigm of data collection and introduced new issues that affect reliability such as inaccurate navigation and lengthy travel time. Consequently, numerous studies focus on the relative reliability of various currently available data collection in UWSNs. In this paper, we first review the problems specific to UWSNs and their impact on reliable data collection. It is followed by a discussion about characteristics, challenges, and features associated with the design of reliable techniques in UWSNs. Afterward, to provide readers with an overview of reliable data collection techniques in UWSNs, this paper categorizes them according to their ability to enhance reliability at all the key stages of data collection. In this categorization framework, the advantages and disadvantages of each technique have been in-depth discussed. Finally, several possible areas for further research are identified and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助悦耳新柔采纳,获得10
1秒前
汉堡包应助豌豆采纳,获得10
2秒前
2秒前
2秒前
明理尔安发布了新的文献求助10
2秒前
3秒前
3秒前
11哥应助xxiao采纳,获得10
4秒前
hubuyyl完成签到,获得积分10
5秒前
子小孙完成签到,获得积分10
5秒前
Singularity应助舒适路人采纳,获得10
5秒前
发哥完成签到 ,获得积分10
5秒前
6秒前
深蓝发布了新的文献求助10
7秒前
8秒前
松松松完成签到,获得积分10
8秒前
8秒前
hly发布了新的文献求助10
8秒前
小玉完成签到,获得积分20
8秒前
椰子味发布了新的文献求助10
9秒前
么么怡发布了新的文献求助10
9秒前
11秒前
pluto应助自由的傲易采纳,获得10
11秒前
12秒前
松松松发布了新的文献求助10
12秒前
12秒前
小柿子发布了新的文献求助10
13秒前
bkagyin应助畅快山兰采纳,获得10
14秒前
丘比特应助axn采纳,获得10
15秒前
16秒前
17秒前
Iridescent_完成签到,获得积分10
17秒前
wm完成签到,获得积分10
17秒前
17秒前
丘比特应助舒适路人采纳,获得10
17秒前
刘若鑫发布了新的文献求助10
17秒前
Peng完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329252
关于积分的说明 10241071
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268