Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

败血症 医学 预警得分 预警系统 急诊科 急诊医学 医疗急救 介绍(产科) 医疗保健 临床决策支持系统 重症监护医学 决策支持系统 计算机科学 内科学 护理部 人工智能 外科 电信 经济 经济增长
作者
Katharine E. Henry,Roy J. Adams,Cassandra Parent,Hossein Soleimani,Anirudh Sridharan,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Klein,Edward S. Chen,Mustapha Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton,Anushree R. Ahluwalia,Albert W. Wu,Suchi Saria
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (7): 1447-1454 被引量:64
标识
DOI:10.1038/s41591-022-01895-z
摘要

Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3 h had a 1.85-h (95% CI 1.66–2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3 h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers' knowledge of, experience with and attitudes toward such systems. Prospective evaluation of a machine learning-based early warning system for sepsis, deployed at five hospitals, showed that healthcare providers interacted with the system at a high rate and that this interaction was associated with faster antibiotic ordering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔发布了新的文献求助10
刚刚
冰魂应助LEETHEO采纳,获得10
3秒前
dongpo完成签到,获得积分10
6秒前
热情的幻丝完成签到,获得积分10
7秒前
脑洞疼应助发家致富的Eric采纳,获得10
8秒前
potato0mud完成签到 ,获得积分10
8秒前
共享精神应助一念初见采纳,获得10
11秒前
15秒前
神勇丹烟完成签到 ,获得积分10
16秒前
pwy完成签到,获得积分20
16秒前
dudu不吃榴莲完成签到,获得积分20
16秒前
Anna发布了新的文献求助10
18秒前
18秒前
19秒前
所所应助大胆怜阳采纳,获得10
20秒前
娜娜完成签到,获得积分20
23秒前
Samsu发布了新的文献求助10
24秒前
小高同学发布了新的文献求助10
24秒前
陶醉的蜜蜂完成签到 ,获得积分10
26秒前
科研通AI5应助SF2768采纳,获得10
27秒前
Liu完成签到,获得积分10
27秒前
31秒前
orixero应助天真的青采纳,获得10
31秒前
Stanley完成签到,获得积分10
33秒前
Hello应助犹豫花卷采纳,获得10
33秒前
33秒前
zjw完成签到,获得积分10
36秒前
跳跃的梦凡完成签到,获得积分10
36秒前
科研通AI5应助乔琪乔采纳,获得20
36秒前
大我要毕业完成签到,获得积分10
37秒前
岚岚完成签到,获得积分10
38秒前
40秒前
学习使我快乐完成签到 ,获得积分10
41秒前
45秒前
dushicheng完成签到,获得积分20
46秒前
犹豫花卷完成签到,获得积分10
46秒前
合适忆南完成签到,获得积分10
47秒前
47秒前
49秒前
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783986
求助须知:如何正确求助?哪些是违规求助? 3329119
关于积分的说明 10240158
捐赠科研通 3044540
什么是DOI,文献DOI怎么找? 1671121
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759192